
OWNER

ALTO MAIPO SpA

PROJECT

ALTO MAIPO HYDROELECTRIC PROJECT

KEY MAP

CONTRACTOR

CONSTRUCTORA NUEVO MAIPO S.A.

DESIGNER

TITLE

PUENTE MANZANITO Y CRUCE SIFON EL YESO RÍO MANZANITO INFORME DE MECÁNICA DE SUELOS

MANZANITO BRIDGE AND EL YESO SIPHON CROSSING MANZANITO RIVER SOIL MECHANICS REPORT

	PREPARED BY	CHECKED BY	APPROVED BY	CODE	REV.
NAME	CMD	SVM	JMG	6173-MS-INF-0001	А
DATE	08/02/2017	08/02/2017	09/02/2017		

REV	PREPARACIÓN SUBTERRA	REVISIÓN SUBTERRA		BACIÓN ERRA	REVISIÓN CNM	APROBA	CIÓN CNM
KLV	NOMBRE	NOMBRE	NOMBRE	FECHA	NOMBRE	NOMBRE	NOMBRE
Α	CMD	SVM	JMG	09/02/2017	MMS	CON	

REVISORES EXPERTOS	NOMBRE	FIRMA/FECHA
GEOTÉCNIA	D. Guillermo Ibarra	09/02/2017
SÍSMICA		

	NOMBRE	FIRMA/FECHA
APROBACIÓN ALTO MAIPO S.p.A.		
OBSERVACIONES ALTO MAIPO S.p.A.		

<u>ÍNDICE</u>

1.	INTRODUCCIÓN	3
2.	OBJETIVO	4
3.	DOCUMENTOS DE REFERENCIA	4
3.1	L. DOCUMENTOS DE PROYECTO	4
3.2		
3.3	3. SOFTWARE	4
3.4	BIBLIOGRAFIA TECNICA	5
4.	CONTEXTO GEOLOGICO	5
5.	INVESTIGACIÓN GEOLÓGICO-GEOTÉCNICA	6
6.	CARACTERIZACIÓN GEOMECÁNICA	8
6.1	CONSIDERACIONES GENERALES	8
6.2	2. ANALISIS DE RESULTADOS DE LABORATORIO	9
6	6.2.1. Identificación	15
6	6.2.2. Propiedades de Estado	16
6	6.2.3. Resistencia	17
6	6.2.4. Compactación	23
6	6.2.5. Deformabilidad	25
7.	BASES PARA EL DISEÑO DE CORTES Y RELLENOS	25
8.	BASES PARA EL DISEÑO DE FUNDACIONES	26
8.1	PROFUNDIDAD DE FUNDACIÓN	26
8.2	2. TIPO DE FUNDACIONES	26
8.3	3. TENSIONES ADMISIBLES PARA FUNDACIONES	26
8.4	CONSTANTES DE BALASTO	30
8.5	6. ROCE SUELO-FUNDACIÓN	31
8.6	6. EMPUJE DE SUELOS	31
8.7	7. RECEPCIÓN DE SELLOS DE FUNDACIÓN	36
9.	COEFICIENTE DE LANE	36
10.	RECOMENDACIONES CONSTRUCTIVAS	38
10.	.1. RELLENOS COMPACTADOS	38
10.	.2. Excavaciones	38
1	10.2.1. Cargas	39

10.2.2.	Criterios de verificación	39
11. SITUA	CIONES IMPREVISTAS	39
12. VERIF	ICACIÓN DE PROPIEDADES GEOTÉCNICAS DURANTE LA FASE DE OBRA	39
12.1 . CL	ASIFICACIÓN DE SUELOS	40
12.2. IDE	NTIFICACIÓN DE LOS SUELOS EN EL CAMPO	41
12.2.1.	Dilatancia (resistencia a la agitación)	42
12.2.2.	Características de Plasticidad	42
12.2.3.	Resistencia en Estado Seco	42
12.2.4.	Color	43
12.2.5.	Olor	43
12.2.6.	Tacto	43
12.3. DE	SCRIPCIÓN DE LOS SUELOS	43

ANEXOS

ANEXO A: INVESTIGACIONES GEOTÉCNICAS

1. INTRODUCCIÓN

El Proyecto Hidroeléctrico Alto Maipo (PHAM) estará localizado al sureste de la ciudad de Santiago, en el municipio de San El proyecto considera la construcción de dos centrales hidroeléctricas denominadas Alfalfal II y Las Lajas, dispuestas en serie hidráulica.

La central Alfalfal II, cuya casa de máquinas se localizará subterráneamente en el valle del río Colorado, frente a la confluencia de este río con el estero Aucayes, aprovechará las aguas aportadas por el río Yeso y varios afluentes del río Volcán. Todas estas aguas, limitadas a un caudal de diseño de 27 m³/s y asociados a una altura bruta de caída de unos 1.139 m, posibilitan la instalación en ella de una central con una potencia del orden de 264 MW, la que se distribuiría en dos unidades generadoras gemelas.

La central Las Lajas aprovechará los caudales descargados por las centrales Alfalfal II y la existente Alfalfal I, como también el ocupado actualmente por la central Maitenes, para conducirlos conjuntamente a través de un túnel de aducción hasta una casa de máquinas subterránea situada también en el valle del río Colorado, pero a unos 3 Km aguas debajo de la confluencia de éste con el estero Aucayes. Aquí, el caudal total máximo de 65 m³/s, asociado a una altura bruta de 483 m permiten la instalación de una central con dos unidades generadoras gemelas con una potencia total del orden de 268 MW. Finalmente, las aguas utilizadas por esta segunda central se conducirán a través de un túnel de descarga hasta devolverlas al río Maipo a unos 5 Km aguas abajo de la confluencia de este río con el río Colorado, frente a la actual S/E La Laja. Así, el complejo hidroeléctrico posibilitará el desarrollo de una potencia total del orden de unos 532 MW, la que aportaría al Sistema Interconectado Central una energía media anual de unos 2.350 millones de kWh.

Este documento define la caracterización geotécnica de los terrenos de excavación y fundación en los que se va a ubicar el Puente Manzanito y el cruce del Sifón El Yeso sobre el río Manzanito.

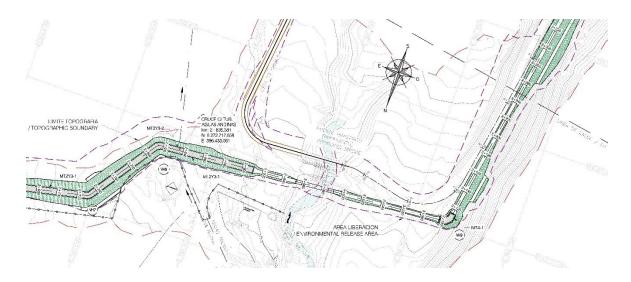


Figura 1. Esquema ubicación cruce rio Manzanito (Siphon y Camino).

2. OBJETIVO

Este documento tiene por objetivo entregar las bases de diseño geotécnicas para la construcción del puente Manzanito y el cruce del Sifón Sector El Yeso sobre el río Manzanito. El Informe de Mecánica de Suelos ha sido abordado considerando los antecedentes geotécnicos y geológicos existentes a la fecha.

3. <u>DOCUMENTOS DE REFERENCIA</u>

3.1. DOCUMENTOS DE PROYECTO

- Tunnel Complex Construction Contract (AM-CO610/620B), dated Nov. 6th, 2012.
- Contract (AM-CO610/620B): Especificación Técnica General Ingeniería de Detalles. 600-PC-ETG-001, Rev. 5.
- Contract (AM-CO610/620B): Criterio de Diseño Estructural Obras Civiles, 600-CI-CDD-003, Rev. 3.
- Contract (AM-CO610/620B): Especificación Técnica General Estudio Geotécnico para Ingeniería de Detalle, 600-MS-ETG-001, Rev. 4.
- Contract (AM-CO610/620B): Especificaciones Técnicas Particulares Mecánica de Suelo de Caminos, Puentes y Postes de Línea de Faena, 601-MS-ETP-001, Rev. 4.
- Contract (AM-CO610/620): Criterio de Diseño Sísmico, 600-SI-CDD-001, Rev. 4.
- Contract (AM-CO610/620): Especificación Técnica General Movimientos de Tierras, 600-CI-ETG-001, Rev. 3.
- Carta AM-CO610/620B-00483 Criterio de Diseño Sísmico para taludes y depósitos de marina (08/10/2014).
- Carta SS-12126-19 Clarification Seismic Design Muck Deposits (04/02/2015, Rodolfo Saragoni).
- Carta AM-CO610/620B-00519 Static safety factor for construction roads design
- IDIEM-1.1.151.051-SIG-DOC-EAM-001, Ensayos de Mecánica de Suelo Proyecto Alto Maipo San Jose de Maipo, Región Metropolitana Alto Maipo S.P.A.
- Informe Geológico. Sifón El Yeso. 6145-GE-INF-0001.
- Informe De Mecánica de Suelos Sifón El Yeso. 6145-MS-INF-0001.

3.2. PLANOS

- 6145-GE-PLA-0001. Sifón El Yeso. Mapa Geológico. Plata y secciones Hoja 1 de 2.
- 6145-GE-PLA-0002. Sifón El Yeso. Mapa Geológico. Plata y secciones Hoja 2 de 2.

3.3. SOFTWARE

N/A

3.4. BIBLIOGRAFIA TECNICA

- Bowles, J. E. (1992). Engineering properties of Soils and their measurement", 4th Ed., McGraw-Hill.
- Carter, M. Bentley, S.P. (1991) Correlations of soil properties. London Pentech.
- Federal Highway Administration (2002), Evaluation of Soil and Rock Properties, Geotechnical Engineering Circular No. 5, FHWA-IF-02-034.
- Federal Highway Administration (2006), Soils and Foundations Reference Manual Volume I. Report N°. FHWA-NHI-06-088.
- Federal Highway Administration (2006), Soils and Foundations Reference Manual Volume II. Report N°. FHWA-NHI-06-089.
- González de Vallejo, L.I., Ferrer, M., Ortuño, L., Oteo, C. (2004) Ingeniería Geológica. Persons Educación.
- Murthy, V.N.S. (2002) Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering
- Naval Facilities Engineering Command (NAVFAC). (1986) Soil Mechanics. Design Manual 7.01.
- Naval Facilities Engineering Command (NAVFAC). (1986) Foundations & Earth Structures. Design Manual 7.02.
- Norma Chilena Oficial NCh 433 Of. 96 Modificada 2012. Diseño sísmico de edificios.
- Rodriguez Ortiz, J.M., Serra Gesta, J., Oteo Mazo, C. (1989) Curso Aplicado de Cimentaciones Colegio Oficial de Arguitectos de Madrid. 4ª Edición.
- U.S. Army Corps of Engineers, (2001) "Geotechnical Investigations, Engineering Manual," 1110-1-1804, Department of Army.
- U.S. Army Corps of Engineers, (2003) "Slope Stability," 1110-2-1902, Department of Army.
- U.S. Army Corps of Engineers, (1996) "Soil Sampling, Engineering Manual," 1110-1-1906, Department of Army.

4. CONTEXTO GEOLOGICO

Durante la fase de diseño, se ha realizado un mapeo geológico de detalle en el área donde se ubica el Sifón El Yeso entre el Portal V5 y el Portal VA4. El Sifón El Yeso se ubica en un valle glaciar, sobre depósitos cuaternarios no consolidados. El área en que se emplazaran los cruces sobre el río Manzanito se caracterizan por la presencia de depósitos fluviales sobre depósitos de morrena.

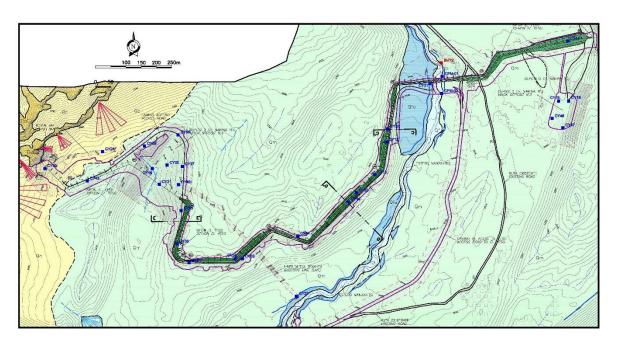


Figura 2. Mapa Geológico (ref. 6145-GE-PLA-0001 y 0002).

5. INVESTIGACIÓN GEOLÓGICO-GEOTÉCNICA

Para la caracterización de la cimentación de los cruces del río Manzanito se han realizado 2 sondeos, además se va a considerar la caracterización geomecánica realizada para el Sifón EL Yeso en el informe correspondiente de mecánica de suelos (6145-MS-INF-0001). Para el estudio del Sifón se realizaron las calicatas y sondeos, localizados en las siguientes coordenadas:

Calicata N°	Ti	ipo	Área	Profundidad (m)	Unidad Geológica	Coordena	das AES G	ener
						E	N	Elev.
CPM-01	Calicata	Mecánico	Puente Manzanito	2,00	Qf	396311	6272722	2439
CPM-02	Calicata	Mecánico	Puente Manzanito	2,00	Qf	396309	6272666	2437
CY01	Calicata	Mecánica	Deposito Marina SAM-2	3,00	Qfg	398936	6272788	2469
CY02	Calicata	Mecánica	Deposito Marina SAM-2	3,00	Qfg	399023	6272848	2474
CY03	Calicata	Manual	Camino Acceso El Yeso	1,10	Qm	395657	6272126	2446
CY04	Calicata	Manual	Camino Acceso El Yeso	1,00	Qm	395482	6272113	2442
CY05	Calicata	Manual	Camino Acceso El Yeso	1,00	Qm	395456	6272283	2447
CY09	Calicata	Mecánica	Sifón El Yeso	3,00	Qm	398234	6272864	2429
CY10	Calicata	Mecánica	Sifón El Yeso	2,00	Qfa	397983	6272857	2405
CY11	Calicata	Mecánica	Sifón El Yeso	3,00	Qm	396722	6272837	2452
CY12	Calicata	Mecánica	Sifón El Yeso	3,00	Qm	396128	6272507	2452
CY13	Calicata	Mecánica	Sifón El Yeso	3,00	Qm	396090	6272400	2453
CY14	Calicata	Manual	Sifón El Yeso	1,00	Qm	396003	6272312	2452
CY16	Calicata	Mecánica	Aducción El Yeso	3,00	Qm	399173	6273282	2485
CY17	Calicata	Mecánica	Aducción El Yeso	3,00	Qfg	399222	6273005	2485

Calicata N°	Ti	ipo	Área	Profundidad (m)	Unidad Geológica		das AES G	
CY18	Calianta	Mecánica	Danasita Marina CAM 2	2.00	0	E 396692	N C070644	Elev. 2445
CY19	Calicata		Deposito Marina SAM-3	3,00 2,00	Qm	396725	6272641 6272641	2445
CY20	Calicata Calicata	Mecánica	Deposito Marina SAM-3		Qm		6272432	2444
CY21	Calicata	Manual Manual	Deposito Marina SAM-4 Deposito Marina SAM-4	1,00 1,00	Qc Qc	395410 395385	6272369	2435
CY22		Manual	LMT El Yeso	-		395834		2392
CY22 CY24	Calicata Calicata		LMT EI Yeso	1,00 1,10	Qm	395199	6272004 6272476	2392
		Manual			Qc Ofa			2473
CY25	Calicata	Mecánica	Campamento El Yeso	3,00	Qfg	398849	6272947	
CY26	Calicata	Mecánica	Campamento El Yeso	3,00	Qfg	398771	6272874	2465
CY29	Calicata	Mecánica	Deposito Marina SAM-2	3,00	Qc Of-	399046	6272732	2483
CY31	Calicata	Mecánica	Sifón El Yeso	2,00	Qfa	396271	6272698	2441
CY32	Calicata	Mecánica	Sifón El Yeso	2,00	Qc	396132	6272550	2448
CY33	Calicata	Mecánica	Sifón El Yeso	2,00	Qm	396030	6272341	2453
CY34	Calicata	Mecánica	Sifón El Yeso	2,00	Qm	395838	6272201	2447
CY35	Calicata	Mecánica	Sifón El Yeso	2,00	Qm	395633	6272126	2452
CY36	Calicata	Mecánica	Sifón El Yeso	2,00	Qm	395442	6272175	2452
CY37	Calicata	Mecánica	Sifón El Yeso	2,00	Qm	395460	6272427	2451
CY38	Calicata	Mecánica	Sifón El Yeso	2,00	Qm	395336	6272494	2466
CY39	Calicata	Mecánica	Portal Salida Túnel Sifón Yeso (VA-4)	3,00	Qm	395010	6272421	2485
CY40	Calicata	Mecánica	Deposito Marina SAM-2	3,00	Qc	399104	6272810	2482
CY43	Calicata	Mecánica	Sifón El Yeso	3,00	Qm	395149	6272380	2460
CY46	Calicata	Mecánica	Deposito Marina SAM-3	2,00	Qm	396671	6272584	2442
CY48	Calicata	Mecánica	Deposito Marina SAM-4	2,00	Qc	395362	6272421	2431
CY49	Calicata	Mecánica	Deposito Marina SAM-4	2,00	Qc	395448	6272368	2447
CY50	Calicata	Mecánica	Sifón El Yeso	Talud	Qm	395453	6272181	
CY51	Calicata	Mecánica	Sifón El Yeso	Talud	Qm	395495	6272123	
CY52	Calicata	Mecánica	Sifón El Yeso	Talud	Qm	395527	6272122	
CY53	Calicata	Mecánica	Sifón El Yeso	Talud	Qm	395595	6272122	0.1.10
BHY2	Sondaje	Mecánico	Puente Manzanito	20,00	Qm	396308	6272766	2443
BHY3	Sondaje	Mecánico	Túnel Suelo - Shaft (Old)	55,00	Qfa/Qm	398007	6272861	2410
BHY4	Sondaje	Mecánico	Túnel Suelo - Shaft (New)	40,00	Qfa/Qm	397995	6272858	2408
BHY5	Sondaje	Mecánico	Puente Manzanito	20,00	Qf	396278	6272705	
BV-S-A	Sondaje	Mecánico	Portal V5	25,00	Qc/Tia	399230	6272891	2495
BV-V6-A	Sondaje	Mecánico	Portal V5	25,00	Qc/Tia	399224	6272820	2502

Tabla 1. Coordenadas puntos de investigación empleados en la caracterización geomecánica.

6. CARACTERIZACIÓN GEOMECÁNICA

6.1. CONSIDERACIONES GENERALES

Parte principal de las obras civiles proyectadas en el contrato AM-CO610/620B considera excavaciones en depósitos granulares correspondientes a depósitos de deslizamientos o depósitos glaciales. Estas formaciones geológicas están formadas, en general, por depósitos granulares que se caracterizan por la presencia desde material arcilloso hasta cantos de distintos tamaños.

Los depósitos granulares, especialmente aquellos que presentan una distribución de tamaño de grano extendido son difíciles de caracterizar con ensayos de laboratorio y pruebas de campo. El análisis granulométrico implica medidas de campo de las dimensiones y distribución de los cantos con el fin de conocer el rango completo de distribución granulométrica; además, esta granulometría presenta una importante variación espacial.

La densidad del material se puede obtener in situ mediante ensayos como el cono de arena o la sustitución del agua; otros métodos in situ se pueden utilizar para el caso de distribución de tamaño macro, como el uso de la escala para el peso y el láser para el volumen. Sin embargo, se tiene que considerar el error que presentan este tipo de procedimientos. El porcentaje de humedad se definen mediante ensayos de laboratorio y se limita a la fracción menor de la muestra (tamaño desde grava a arcilla).

Los parámetros de corte son los más difíciles de definir. En primer lugar, debido a las dificultades para obtener muestras inalteradas y en segundo lugar las pruebas de laboratorio están limitadas por la granulometría. El ensayo de corte estándar considera células de presión de 5 cm de diámetro y 2,54 cm de altura y el tamaño de grano se limita bajo 4mm. Por tanto, los ensayos realizados bajo la célula estándar pueden considerarse que representa parámetros de corte exclusivamente de la matriz de los depósitos granulares. Por otra parte, estos ensayos de laboratorio deben hacerse sobre muestras compactadas, en consecuencia, se añade el problema para definir el peso unitario a para conseguir en muestras compactadas. Si la prueba se realiza con la densidad global in situ, significa que la muestra está sobre compactada; porque para una muestra de la fracción más fina, es común que su peso unitario sea más pequeño que para una muestra con mayor rango de distribución de tamaño. En consecuencia, la prueba debe hacerse bajo la densidad del rango granulométrico de la muestra que admite la célula de presión.

Como alternativa, existen ensayo de corte in situ; en general estas pruebas de campo dan resultados más fiables que las pruebas de laboratorio en suelos muy de grano grueso. Estos ensayos de corte in situ puede ser ejecutados con diferentes dimensiones de células de presión; como norma general, los ensayos con las células de cizallamiento más grandes se obtienen los resultados más representativos. Sin embargo, hay que tener en cuenta que, debido a la granulometría observada en terreno, las muestras ensayadas no siempre consideran la granulometría completa. Por ello, no se recomienda el empleo de estas cajas de corte directo más grande, así como, el empleo de curvas homotéticas a partir de las cuales tampoco se obtendrían resultados comparables.

Sin embargo, se considera que los resultados obtenidos mediante ensayos de corte con célula de presión de 5 cm de diámetro y 2,54 cm de altura, son totalmente validos en lo que se refiere a los valores de fricción. Diversos estudios y autores confirman que las diferencias obtenidas en ensayos con diferentes tamaños de célula de corte no son significativas y, incluso se desaconseja el empleo de cajas de gran tamaño por efecto de punzonamiento de las partículas contra las paredes de las cajas de corte.

Durante la fase de construcción, se realizará un seguimiento geotécnico de las excavaciones, en caso de detectarse alguna inestabilidad se realizará un retro-análisis que permita verificar las hipótesis de diseño. En aquellos los casos en que la estabilidad de las excavaciones este en duda se propondrán medidas correctivas y se definirá un diseño revisado.

Los parámetros de deformación característica también son difíciles de definir ya que como se ha mencionado antes de las muestras inalteradas son difíciles de obtener. Si es necesario para casos específicos, se puede considerar la ejecución de ensayos in situ (por ejemplo, ensayos de placa de carga) que permiten la definición de las características deformacionales del suelo.

La compactación se define a través del ensayo Proctor Modificado, sin embargo, de la misma manera que con la prueba estándar de corte directo, para el ensayo Proctor, se selecciona la muestra para la fracción fina descartando la fracción mayor según el procedimiento de prueba propia. Debido a estas limitaciones, se ejecutarán pruebas in situ (es decir, terraplenes de prueba) para definir el peso unitario máximo que se puede alcanzar con la compactación de acuerdo con los requisitos de las especificaciones técnicas. Los valores obtenidos en los terraplenes compactados se compararán con material de origen (en unidad de peso situ) con el fin de definir los coeficientes de esponjamiento.

En general, este tipo de depósitos granulares se caracterizan en base a correlaciones entre propiedades o con correlaciones con pruebas de campo. Pero teniendo en cuenta que en la densidad situ y la húmeda son los principales parámetros que pueden ser establecidos con cierto grado de precisión, el uso de las correlaciones está limitado y se deberán plantear hipótesis de trabajo.

Con el fin de acotar a las propiedades del material, se han realizado ensayos de identificación y de corte estándar y, cuando se dispone de información se han utilizado correlaciones. Sin embargo, debido a las dificultades antes mencionadas las propiedades consideradas para el diseño se han definido en base a nuestro juicio ingenieril después de una revisión crítica de los resultados de ensayos de laboratorio e in situ, además los valores definidos se han comparado con los valores estándar disponibles en la literatura.

CNM considera que las propiedades propuestas para el diseño son razonables para el diseño de las estructuras proyectadas, en cualquier caso, se realizará un seguimiento geotécnico de las obras y en caso de encontrarse desviaciones en los materiales descritos se realizaran los análisis adicionales necesarios.

6.2. ANALISIS DE RESULTADOS DE LABORATORIO

Como se ha indicado anteriormente, las excavaciones asociadas a la construcción del Sifón el Yeso y la cimentación de los cruces sobre el río Manzanito se van a desarrollar en materiales cuaternarios asociados a depósitos de deslizamientos morrénicos y aluvio-fluviales. En estos materiales se han realizado calicatas y sondeos, en las que se han obtenido muestras para la realización de ensayos de laboratorio.

En la tabla siguiente se presentan los resultados de los ensayos realizados que servirán de base para la caracterización geomecánica, es importante destacar que no se ensayaron todas las calicatas y sondeos.

				Granul	ometría (P	orcentaje d	que pasa)	Gra	anulometi	ría -	L	imites Atterb	erg	Clasificación		Densidad		Humedad	Índice de	Proct	tor Mo	dificado	CBR		Corte	Directo	
Calicata N°	Muestra	Prof. Muestra	Unidad	N° 4	N° 10	N° 40	N° 200	Gravas	Arenas	Finos	Límite	Límite	Índice de	USCS	de partículas	In Situ Húmeda	In Situ Seca	natural	Poros	DM	Н	D95%PM	95% PM	CI	,	Cl	J
		(m)	Geológica	4.75 mm	2.00 mm	0.42 mm	0.075 mm	(%)	(%)	(%)	líquido (%)	Plástico (%)	Plasticidad		(kN/m3)	(kN/m3)	(kN/m3)	(%)		(kN/m3)	(%)	(kN/m3)	(%)	c (kPa)	φ (°)	cu (kPa)	φ (°)
CPM-01	M1	2,00	Qf	25	17	9	6	75	19	6	21,7	NP	NP	GP-GM	27,32			7,70								1	
CPM-02	M1	2,00	Qf	23	17	9	5	78	18	5	22,5	NP	NP	GP	27,32			6,90									
CY01	M1	1,00	Qfg	45	26	25	17	55	28	17	23,0	14	9	GC	27,42					21,89	7,40	20,80	42,00			1	
CY01	M2	3,00	Qfg	42	30	18	10	58	32	10	NP	NP	NP	GP-GM	27,96					22,49	7,40	21,37	42,00				
CY02	M1	1,40	Qfg	51	30	24	14	49	37	14	NP	NP	NP	GM	27,62					22,33	6,40	21,21	93,00				
CY02	M2	3,00	Qfg	43	30	14	8	57	35	8	NP	NP	NP	GW-GM	27,80					22,90	7,20	21,76	100,00				
CY03	M1	0,30	Qm	56	47	30	18	44	38	18	NP	NP	NP	GM	26,92			1,00		21,41	6,60	20,34	45,00				
CY04	M1	0,30	Qm	58	46	25	14	42	44	14	NP	NP	NP	SM	27,72					21,70	6,60	20,62	100,00				
CY05	M1	0,30	Qm	59	45	27	18	41	41	18	NP	NP	NP	GM	27,08					20,93	7,10	19,88	54,00			<u> </u>	
CY09	M1	0,30	Qm	50	48	36	29	50	21	29	29,0	18	11	GC	27,48					22,04	7,20	20,94	25,00				
CY09	M2	3,00	Qfg	33	24	15	9	67	24	9	NP	NP	NP	GP-GM	27,85					22,94	6,20	21,79	100,00				
CY10	M1	3,00	Qfa	29	22	14	9	71	20	9	NP	NP	NP	GP-GM	28,38					22,53	6,50	21,40	76,00				
CY11	M1	3,00	Qm	50	29	10	5	50	45	5	NP	NP	NP	GW-GM	26,55					20,52	6,10	19,49	71,00				
CY12	M1	3,00	Qm	31	20	9	3	69	28	3	NP	NP	NP	GW	27,69					21,99	5,10	20,89	87,00			<u> </u>	
CY13	M1	0,30	Qm	31	21	12	7	69	24	7	NP	NP	NP	GP-GM	27,70					22,28	7,20	21,17	100,00				
CY14	M1	0,30	Qm	73	61	36	15	27	58	15	24,0	17	7	SM-SC	26,61					20,24	9,20	19,23	46,00				
CY16	M1	3,00	Qm	32	25	15	9	68	23	9	NP	NP	NP	GP-GM	27,80					23,00	6,70	21,85	63,00			<u> </u>	
CY17	M1	1,50	Qfg	23	20	15	11	77	12	11	52,0	37	15	GP-GM	27,40					21,20	8,80	20,14	21,00				
CY17	M2	3,00	Qc	53	41	25	16	47	37	16	20,0	15	4	GC-GM	27,40					22,90	7,70	21,76	19,00			1	
CY18	M1	3,00	Qm	30	22	14	7	70	23	7	NP	NP	NP	GP-GM	26,43					21,57	7,00	20,49	72,00			1	
CY19	M1	0,30	Qm	67	52	27	9	33	58	9	NP	NP	NP	SW-SM	26,49					22,40	6,60	21,28	46,00				
CY19	M2	3,00	Qm	45	30	22	9	55	36	9	NP	NP	NP	GW-GM	26,67					20,95	7,60	19,90	68,00			<u> </u>	
CY20	M1	0,30	Qc	47	37	24	17	53	30	17	NP	NP	NP	GM	26,86					21,39	7,00	20,32	60,00			<u> </u>	
CY21	M1	0,30	Qc	48	34	16	7	52	41	7	NP	NP	NP	GW-GM	31,23					21,85	9,50	20,76	64,00			<u> </u>	
CY22	M1	0,30	Qm	47	33	16	8	53	39	8	20,0	13	7	GW-GM	26,84					21,14	8,10	20,08	75,00			<u> </u>	
CY24	M1	0,30	Qc	31	23	13	7	69	24	7	NP	NP	NP	GP-GM	27,46					21,68	7,00	20,60	94,00				
CY25	M1	0,60	Qfg	49	36	16	8	51	41	8	21,0	15	6	GW-GC	27,50					23,20	8,70	22,04	64,00				
CY25	M2	3,00	Qfg	32	24	10	4	68	28	4	NP	NP	NP	GW	27,40					22,60	7,00	21,47	70,00				
CY26	M1	3,00	Qfg	46	36	19	12	54	34	12	NP	NP	NP	GP-GM	27,70					22,80	7,40	21,66	54,00				
CY29	M1	2,00	Qc	39	25	10	4	61	35	4	23,4	NP	NP	GP	27,37	22,14	20,81	6,40	31,50								
CY31	M1	1,50	Qfa	31	19	7	3	69	28	3	22,1	NP	NP	GP	27,07	19,61	19,04	3,00	42,20					39,00	43,40	21,00	49,90
CY32	M1	1,00	Qc	29	22	13	6	71	23	6	29,5	23,5	6	GP-GM	27,75	18,78	17,94	4,70	54,70					17,00	41,40	21,00	36,90
CY33	M1	2,00	Qm	62	51	28	12	38,5	50	12	20,5	NP	NP	SW-SM	26,77	16,84	15,75	6,90	69,90					17,00	38,30	9,00	40,40
CY33	M2	1,50	Qm	29,8	18,5	7	0	70,2	29,4	0,4	20,5	NP	NP	GP	27,97	19,36	18,11	6,90	54,40					23,00	42,30	25,00	36,30
CY34	M1	1,50	Qm	57,1	45,9	26,3	11,5	42,9	46	11,5	20,7	NP	NP	SW-SM	26,99	18,50	17,45	6,00	54,60					15,00	40,10	23,00	38,30
CY35	M1	1,50	Qm	45	35	21	12	55	33	12	21,6	18,5	3,5	GW-GM	27,39	19,06	17,81	7,00	53,80					17,00	38,80	12,00	41,20
CY36	M1	1,50	Qm	47,5	35,0	18,7	10,2	52,5	37,3	10,2	24,2	19,4	4,8	GW-GC	27,20	18,15	16,97	6,90	60,30					15,00	41,20	17,00	40,60
CY37	M1	1,50	Qm	41	31	17	8	59	33	8	22,9	NP	NP	GW-GM	27,62	18,33	17,05	7,50	62,00					18,00	38,60	15,00	38,30
CY38	M1	1,50	Qm	61	48	29	14	39	47	14	23,1	NP	NP	SM	25,94	17,51	16,41	6,70	58,10					21,50	35,00	15,50	37,50
CY39	M1	1,50	Qm	40	32	22	16	60	24	16	29,0	21	8	GC	27,20	19,55	18,14	7,80	49,90					29,00	37,40	45,00	33,80

				Granu	lometría (P	orcentaje d	que pasa)	Gra	anulomet	ría	L	imites Atterb	erg	Clasificación		Densidad		Humedad	Índice de	Procto	or Mod	dificado	CBR		Corte	Directo	
Calicata N°		Prof. Muestra	Unidad Geológica	N° 4	N° 10	N° 40	N° 200	Gravas	Arenas	Finos	Límite	Límite	Índice de	uscs	de partículas	In Situ Húmeda	In Situ Seca	natural	Poros	DM	Н	D95%PM	95% PM	С)	CU	J
		(m)	coologica	4.75 mm	2.00 mm	0.42 mm	0.075 mm	(%)	(%)	(%)	líquido (%)	Plástico (%)	Plasticidad		(kN/m3)	(kN/m3)	(kN/m3)	(%)		(kN/m3)	(%)	(kN/m3)	(%)	c (kPa)	φ (°)	cu (kPa)	φ (°)
CY40	M1	1,50	Qc	43	34	17	7	57	36	7	24,6	NP	NP	GW-GM	26,49	22,30	21,06	5,90	25,80							1	
CY43	M2	3,00	Qm	50	37	17	7	50	42	7	20,1	NP	NP	GW-GM	27,04	22,29	20,89	6,70	29,40	21,36				26,00	46,10	32,50	53,10
CY46	M1	1,50	Qm	18	13	8	7	82	11	7	21,4	NP	NP	GP-GM	26,65	21,65	20,10	7,70	32,60								
CY48	M1	1,50	Qc	34,30	26,00	13,20	5,70	65,7	28,6	5,7	21,8	NP	NP	GW-GM	26,35	22,35	20,54	8,80	28,30					34,50	48,20	38,00	46,00
CY49	M1	1,50	Qc	37	27	18	7	63	30	7	21,9	NP	NP	GP-GM	26,39	22,51	21,02	7,10	25,60					27,00	55,40	30,00	56,20
CY50	M1	Talud	Qm	18			2	82	15	2	32,0	28	4	GP													
CY51	M1	Talud	Qm	33			6	67	27	6	22,6	NP	NP	GP-GM													
CY52	M1	Talud	Qm	28			4	72	24	4	26,3	17,9	8,4	GC-GM													
CY53	M1	Talud	Qm	8			1	92	7	1	21,8	NP	NP	Roca													
BHY2	N/A	N/A	Qm																								
BHY3	N/A	N/A	Qfa/Qm																								
BHY4	N/A	N/A	Qfa/Qm																								
BHY5	M1	1,00-1,45	Qf	61	39	17	7	39	54	7																	
BHY5	M2	2,50-2,95	Qm	81	72	57	11	19	70	11																	
BV-S-A	N/A	N/A	Qc/Tia																								
BV-V6-A	N/A	N/A	Qc/Tia																								

Tabla 2: Ensayos de laboratorio.

En la siguiente tabla se muestra el resultado de un análisis estadístico de los ensayos anteriores, separados por unidades geológicas, en base a las similitudes entre las unidades Qf, Qfa y Qfg se han unificado en una unidad geotécnica, así mismo se han unificado las unidades Qc y Qm.

		Granulo	metría (Po	rcentaje q	ue pasa)	Gra	nulomet	ría	Clasificación		Densidad		Humedad	Índice de	Proct	or Mod	ificado	CBR		Corte I	Directo	
Unidad (Geológica	N° 4	N° 10	N° 40	N° 200	Gravas	Arenas	Finos	USCS	de partículas	In Situ Húmeda	In Situ Seca	natural	Poros	DM	Н	D95%PM	95% PM	CI)	CU	,
		4.75 mm	2.00 mm	0.42 mm	0.075 mm	(%)	(%)	(%)		(kN/m3)	(kN/m3)	(kN/m3)	(%)		(kN/m3)	(%)	(kN/m3)	(%)	c (kPa)	φ (°)	cu (kPa)	φ (°)
	Nº Muestras	3,00	3,00	3,00	3,00	3,00	3,00	3,00		2,00			2,00									
	Valor Máximo	60,90	39,00	17,10	6,60	77,50	54,30	6,60		27,32			7,70									
Análisis Estadístico Unidad	Valor Mínimo	22,50	16,50	8,90	4,70	39,10	17,80	4,70		27,32			6,90									
geotécnica Qf	Valor Promedio	36,03	24,03	11,63	5,60	63,97	30,43	5,60		27,32			7,30									
	Desviación Estándar	21,56	12,96	4,73	0,95	21,56	20,68	0,95					0,57									
	Coeficiente de Variación (%)	59,84	53,93	40,70	17,03	33,71	67,96	17,03					7,75									
	Nº Muestras	2,00	2,00	2,00	2,00	2,00	2,00	2,00		2,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	Valor Máximo	31,40	22,00	14,00	9,00	71,00	28,40	9,00		28,38	19,61	19,04	3,00	42,20	22,53	6,50	21,40	76,00	39,00	43,40	21,00	49,90
Análisis Estadístico Unidad	Valor Mínimo	29,00	18,60	6,80	3,00	68,60	20,00	3,00		27,07	19,61	19,04	3,00	42,20	22,53	6,50	21,40	76,00	39,00	43,40	21,00	49,90
geotécnica Qfa	Valor Promedio	30,20	20,30	10,40	6,00	69,80	24,20	6,00		27,73	19,61	19,04	3,00	42,20	22,53	6,50	21,40	76,00	39,00	43,40	21,00	49,90
	Desviación Estándar	1,70	2,40	5,09	4,24	1,70	5,94	4,24		0,93												
	Coeficiente de Variación (%)	5,62	11,84	48,95	70,71	2,43	24,54	70,71		3,34												

		Granulo	ometría (Po	orcentaje q	ue pasa)	Gra	nulomet	ría	Clasificación		Densidad		Humedad	Índice de	Proct	or Mod	ificado	CBR		Corte	Directo	
Unidad (Geológica	N° 4	N° 10	N° 40	N° 200	Gravas	Arenas	Finos	USCS	de partículas	In Situ Húmeda	In Situ Seca	natural	Poros	DM	Н	D95%PM	95% PM	CI)	cu	J
		4.75 mm	2.00 mm	0.42 mm	0.075 mm	(%)	(%)	(%)		(kN/m3)	(kN/m3)	(kN/m3)	(%)		(kN/m3)	(%)	(kN/m3)	(%)	c (kPa)	φ (°)	cu (kPa)	φ (°)
	Nº Muestras	9,00	9,00	9,00	9,00	9,00	9,00	9,00		9,00					9,00	9,00	9,00	9,00				
	Valor Máximo	51,00	36,00	25,00	17,00	77,00	41,00	17,00		27,96					23,20	8,80	22,04	100,00				
Análisis Estadístico Unidad	Valor Mínimo	23,00	20,00	10,00	4,00	49,00	12,00	4,00		27,40					21,20	6,20	20,14	21,00				
geotécnica Qfg	Valor Promedio	40,44	28,44	17,33	10,33	59,56	30,11	10,33		27,63					22,48	7,39	21,36	65,11				
	Desviación Estándar	9,19	5,46	4,80	3,77	9,19	8,54	3,77		0,21					0,62	0,89	0,58	28,23				
	Coeficiente de Variación (%)	22,73	19,18	27,67	36,53	15,44	28,35	36,53		0,77					2,74	12,00	2,74	43,35		1		
	Nº Muestras	9,00	9,00	9,00	9,00	9,00	9,00	9,00		9,00	5,00	5,00	5,00	5,00	4,00	4,00	4,00	4,00	3,00	3,00	3,00	3,00
	Valor Máximo	53,00	41,00	25,00	17,00	71,30	41,00	17,00		31,23	22,51	21,06	8,80	54,70	22,90	9,50	21,76	94,00	34,50	55,40	38,00	56,20
Análisis Estadístico Unidad	Valor Mínimo	28,70	22,00	10,10	4,10	47,00	23,20	4,10		26,35	18,78	17,94	4,70	25,60	21,39	7,00	20,32	19,00	17,00	41,40	21,00	36,90
geotécnica Qc	Valor Promedio	40,11	29,88	16,54	8,48	59,89	31,63	8,48		27,48	21,62	20,27	6,58	33,18	21,96	7,80	20,86	59,25	26,17	48,33	29,67	46,37
	Desviación Estándar	8,22	6,76	5,11	4,66	8,22	6,03	4,66		1,50	1,59	1,32	1,52	12,26	0,66	1,18	0,63	30,83	8,78	7,00	8,50	9,66
	Coeficiente de Variación (%)	20,49	22,62	30,91	54,98	13,72	19,07	54,98		5,46	7,36	6,52	23,08	36,96	3,00	15,13	3,00	52,03	33,55	14,48	28,67	20,82
	Nº Muestras	28,00	24,00	24,00	28,00	28,00	28,00	28,00		23,00	10,00	10,00	11,00	10,00	14,00	13,00	13,00	13,00	9,00	9,00	9,00	9,00
	Valor Máximo	81,10	72,30	56,70	29,00	91,80	69,80	29,00		27,97	22,29	20,89	7,80	69,90	23,00	9,20	21,85	100,00	29,00	46,10	45,00	53,10
Análisis Estadístico Unidad	Valor Mínimo	8,20	12,80	7,10	0,40	18,90	7,10	0,40		25,94	16,84	15,75	1,00	29,40	20,24	5,10	19,23	25,00	15,00	35,00	9,00	33,80
geotécnica Qm	Valor Promedio	44,53	37,39	22,10	9,79	55,47	34,74	9,79		27,08	19,12	17,87	6,46	52,50	21,54	7,01	20,47	65,54	20,17	39,76	21,56	39,94
	Desviación Estándar	17,35	14,51	11,16	6,03	17,35	14,66	6,03		0,53	1,71	1,58	1,88	12,61	0,76	0,98	0,75	22,31	5,00	3,19	11,36	5,45
	Coeficiente de Variación (%)	38,97	38,82	50,49	61,55	31,29	42,19	61,55		1,96	8,96	8,85	29,12	24,02	3,54	13,96	3,67	34,04	24,79	8,03	52,71	13,65

Tabla 3: Estadísticas de ensayos de laboratorio por unidades geológicas.

				Granul	ometría (Po	orcentaje q	ue pasa)	Gra	nulometi	ría	L	imites Att	erberg	Clasificación		Densidad		Humedad	Índice	Proct	tor Mod	ificado	CBR		Corte	Directo	
Calicata N°	Muestra	Prof. Muestra	Unidad Geológica	N° 4	N° 10	N° 40	N° 200	Gravas	Arenas	Finos	Límite	Límite	Índice de	USCS	de partículas	In Situ Húmeda	In Situ Seca	natural	de Poros	DM	Н	D95%PM	95% PM	С	D	C	CU
		(m)	Geologica	4.75 mm	2.00 mm	0.42 mm	0.075 mm	(%)	(%)	(%)	líquido (%)	Plástico (%)	Plasticidad		(kN/m3)	(kN/m3)	(kN/m3)	(%)		(kN/m3)	(%)	(kN/m3)	(%)	c (kPa)	φ (°)	cu (kPa)	φ (°)
CPM-01	M1	2,00	Qf	25	17	9	6	75	19	6	21,7	NP	NP	GP-GM	27,32			7,70									
CPM-02	M1	2,00	Qf	23	17	9	5	78	18	5	22,5	NP	NP	GP	27,32			6,90									
BHY5	M1	1,00-1,45	Qf	61	39	17	7	39	54	7																	
CY10	M1	3,00	Qfa	29	22	14	9	71	20	9	NP	NP	NP	GP-GM	28,38					22,53	6,50	21,40	76,00				
CY31	M1	1,50	Qfa	31	19	7	3	69	28	3	22,1	NP	NP	GP	27,07	19,61	19,04	3,00	42,20					39,00	43,40	21,00	49,90
CY01	M1	1,00	Qfg	45	26	25	17	55	28	17	23,0	14	9	GC	27,42					21,89	7,40	20,80	42,00				
CY01	M2	3,00	Qfg	42	30	18	10	58	32	10	NP	NP	NP	GP-GM	27,96					22,49	7,40	21,37	42,00				
CY02	M1	1,40	Qfg	51	30	24	14	49	37	14	NP	NP	NP	GM	27,62					22,33	6,40	21,21	93,00				
CY02	M2	3,00	Qfg	43	30	14	8	57	35	8	NP	NP	NP	GW-GM	27,80					22,90	7,20	21,76	100,00				
CY09	M2	3,00	Qfg	33	24	15	9	67	24	9	NP	NP	NP	GP-GM	27,85					22,94	6,20	21,79	100,00				
CY17	M1	1,50	Qfg	23	20	15	11	77	12	11	52,0	37	15	GP-GM	27,40					21,20	8,80	20,14	21,00				
CY25	M1	0,60	Qfg	49	36	16	8	51	41	8	21,0	15	6	GW-GC	27,50					23,20	8,70	22,04	64,00				
CY25	M2	3,00	Qfg	32	24	10	4	68	28	4	NP	NP	NP	GW	27,40					22,60	7,00	21,47	70,00				
CY26	M1	3,00	Qfg	46	36	19	12	54	34	12	NP	NP	NP	GP-GM	27,70					22,80	7,40	21,66	54,00				
		Nº Mue	estras	14	14	14	14	14	14	14	6	3	3		13	1	1	3	1	10	10	10	10	1	1	1	1
		Valor Ma	áximo	61	39	25	17	78	54	17	52	37	15		28,38	19,61	19,04	7,70	42,20	23,20	8,80	22,04	100,00	39,00	43,40	21,00	49,90
Análisis Es		Valor M	línimo	23	17	7	3	39	12	3	21	14	6		27,07	19,61	19,04	3,00	42,20	21,20	6,20	20,14	21,00	39,00	43,40	21,00	49,90
Unidad geote Qfa-0	ecnica Qi- Qfg	Valor Pro	omedio	38,04	26,34	15,12	8,70	61,96	29,34	8,70	27,05	22,00	10,00		27,60	19,61	19,04	5,87	42,20	22,49	7,30	21,36	66,20	39,00	43,40	21,00	49,90
		Desviación	Estándar	11,75	7,38	5,41	3,93	11,75	10,87	3,93	12,24	13,00	4,58		0,34			2,51		0,58	0,88	0,55	26,84				
		Coeficiente de \	Variación (%)	30,90	28,04	35,75	45,22	18,97	37,05	45,22	45,26	59,09	45,83		1,24			42,86		2,58	12,08	2,58	40,54				
				Granul	ometría (Po	orcentaje q	ue pasa)	Gra	nulomet	ría	L	imites Att	erberg	Clasificación	1	Densidad		Humedad	Índice	Proct	tor Mod	ificado	CBR		Corte	Directo	
Calicata N°	Muestra	Prof. Muestra	Unidad Geológica	N° 4	N° 10	N° 40	N° 200	Gravas	Arenas	Finos	Límite	Límite	Índice de	USCS	de partículas	In Situ Húmeda	In Situ Seca	natural	de Poros	DM	н	D95%PM	95% PM	С	D	C	CU
		(m)	Cologica	4.75 mm	2.00 mm	0.42 mm	0.075 mm	(%)	(%)	(%)	líquido (%)	Plástico (%)	Plasticidad		(kN/m3)	(kN/m3)	(kN/m3)	(%)		(kN/m3)	(%)	(kN/m3)	(%)	c (kPa)	φ (°)	cu (kPa)	φ (°)
CY17	M2	3,00	Qc	53	41	25	16	47	37	16	20,0	15	4	GC-GM	27,40					22,90	7,70	21,76	19,00				
CY20	M1	0,30	Qc	47	37	24	17	53	30	17	NP	NP	NP	GM	26,86					21,39	7,00	20,32	60,00				
CY21	M1	0,30	Qc	48	34	16	7	52	41	7	NP	NP	NP	GW-GM	31,23					21,85	9,50	20,76	64,00				
CY24	M1	0,30	Qc	31	23	13	7	69	24	7	NP	NP	NP	GP-GM	27,46					21,68	7,00	20,60	94,00				
CY29	M1	2,00	Qc	39	25	10	4	61	35	4	23,4	NP	NP	GP	27,37	22,14	20,81	6,40	31,50								
CY32	M1	1,00	Qc	29	22	13	6	71	23	6	29,5	23,5	6	GP-GM	27,75	18,78	17,94	4,70	54,70					17,00	41,40	21,00	36,90
CY40	M1	1,50	Qc	43	34	17	7	57	36	7	24,6	NP	NP	GW-GM	26,49	22,30	21,06	5,90	25,80								
CY48	M1	1,50	Qc	34,30	26,00	13,20	5,70	65,7	28,6	5,7	21,8	NP	NP	GW-GM	26,35	22,35	20,54	8,80	28,30					34,50	48,20	38,00	46,00
CY49	M1	1,50	Qc	37	27	18	7	63	30	7	21,9	NP	NP	GP-GM	26,39	22,51	21,02	7,10	25,60					27,00	55,40	30,00	56,20
CY03	M1	0,30	Qm	56	47	30	18	44	38	18	NP	NP	NP	GM	26,92			1,00		21,41	6,60	20,34	45,00				
CY04	M1	0,30	Qm	58	46	25	14	42	44	14	NP	NP	NP	SM	27,72					21,70	6,60	20,62	100,00				
CY05	M1	0,30	Qm	59	45	27	18	41	41	18	NP	NP	NP	GM	27,08					20,93	7,10	19,88	54,00				
CY09	M1	0,30	Qm	50	48	36	29	50	21	29	29,0	18	11	GC	27,48					22,04	7,20	20,94	25,00				
CY11	M1	3,00	Qm	50	29	10	5	50	45	5	NP	NP	NP	GW-GM	26,55					20,52	6,10	19,49	71,00				
CY12	M1	3,00	Qm	31	20	9	3	69	28	3	NP	NP	NP	GW	27,69					21,99	5,10	20,89	87,00				
CY13	M1	0,30	Qm	31	21	12	7	69	24	7	NP	NP	NP	GP-GM	27,70					22,28	7,20	21,17	100,00				

				Granul	ometría (Po	orcentaje q	ue pasa)	Gra	nulometr	ía	L	imites Att	erberg	Clasificación	I	Densidad		Humedad	Índice	Proct	tor Modi	ificado	CBR		Corte	Directo	
Calicata N°	Muestra	Prof. Muestra	Unidad	N° 4	N° 10	N° 40	N° 200	Gravas	Arenas	Finos	Límite	Límite	Índice de	USCS	de partículas	In Situ Húmeda	In Situ Seca	natural	de Poros	DM	Н	D95%PM	95% PM	С	D	С	CU
		(m)	Geológica	4.75 mm	2.00 mm	0.42 mm	0.075 mm	(%)	(%)	(%)	líquido (%)	Plástico (%)	Plasticidad		(kN/m3)	(kN/m3)	(kN/m3)	(%)		(kN/m3)	(%)	(kN/m3)	(%)	c (kPa)	φ (°)	cu (kPa)	φ (°)
CY14	M1	0,30	Qm	73	61	36	15	27	58	15	24,0	17	7	SM-SC	26,61					20,24	9,20	19,23	46,00				
CY16	M1	3,00	Qm	32	25	15	9	68	23	9	NP	NP	NP	GP-GM	27,80					23,00	6,70	21,85	63,00				
CY18	M1	3,00	Qm	30	22	14	7	70	23	7	NP	NP	NP	GP-GM	26,43					21,57	7,00	20,49	72,00				
CY19	M1	0,30	Qm	67	52	27	9	33	58	9	NP	NP	NP	SW-SM	26,49					22,40	6,60	21,28	46,00				
CY19	M2	3,00	Qm	45	30	22	9	55	36	9	NP	NP	NP	GW-GM	26,67					20,95	7,60	19,90	68,00				
CY22	M1	0,30	Qm	47	33	16	8	53	39	8	20,0	13	7	GW-GM	26,84					21,14	8,10	20,08	75,00				
CY33	M1	2,00	Qm	62	51	28	12	38,5	50	12	20,5	NP	NP	SW-SM	26,77	16,84	15,75	6,90	69,90					17,00	38,30	9,00	40,40
CY33	M2	1,50	Qm	29,8	18,5	7	0	70,2	29,4	0,4	20,5	NP	NP	GP	27,97	19,36	18,11	6,90	54,40					23,00	42,30	25,00	36,30
CY34	M1	1,50	Qm	57,1	45,9	26,3	11,5	42,9	46	11,5	20,7	NP	NP	SW-SM	26,99	18,50	17,45	6,00	54,60					15,00	40,10	23,00	38,30
CY35	M1	1,50	Qm	45	35	21	12	55	33	12	21,6	18,5	3,5	GW-GM	27,39	19,06	17,81	7,00	53,80					17,00	38,80	12,00	41,20
CY36	M1	1,50	Qm	47,5	35,0	18,7	10,2	52,5	37,3	10,2	24,2	19,4	4,8	GW-GC	27,20	18,15	16,97	6,90	60,30					15,00	41,20	17,00	40,60
CY37	M1	1,50	Qm	41	31	17	8	59	33	8	22,9	NP	NP	GW-GM	27,62	18,33	17,05	7,50	62,00					18,00	38,60	15,00	38,30
CY38	M1	1,50	Qm	61	48	29	14	39	47	14	23,1	NP	NP	SM	25,94	17,51	16,41	6,70	58,10					21,50	35,00	15,50	37,50
CY39	M1	1,50	Qm	40	32	22	16	60	24	16	29,0	21	8	GC	27,20	19,55	18,14	7,80	49,90					29,00	37,40	45,00	33,80
CY43	M2	3,00	Qm	50	37	17	7	50	42	7	20,1	NP	NP	GW-GM	27,04	22,29	20,89	6,70	29,40	21,36				26,00	46,10	32,50	53,10
CY46	M1	1,50	Qm	18	13	8	7	82	11	7	21,4	NP	NP	GP-GM	26,65	21,65	20,10	7,70	32,60								
CY50	M1	Talud	Qm	18			2	82	15	2	32,0	28	4	GP													
CY51	M1	Talud	Qm	33			6	67	27	6	22,6	NP	NP	GP-GM													
CY52	M1	Talud	Qm	28			4	72	24	4	26,3	17,9	8,4	GC-GM													
CY53	M1	Talud	Qm	8			1	92	7	1	21,8	NP	NP	Roca													
BHY2	N/A	N/A	Qm																								
BHY5	M2	2,50-2,95	Qm	81	72	57	11	19	70	11																	
		Nº Mue	stras	37	33	33	37	37	37	37	23	10	10		32	15	15	16	15	18	17	17	17	12	12	12	12
		Valor Ma	áximo	81	72	57	29	92	70	29	32	28	11		31,23	22,51	21,06	8,80	69,90	23,00	9,50	21,85	100,00	34,50	55,40	45,00	56,20
Análisis Est		Valor Mi	ínimo	8	13	7	0	19	7	0	20	13	4		25,94	16,84	15,75	1,00	25,60	20,24	5,10	19,23	19,00	15,00	35,00	9,00	33,80
Unidad geoté	ecnica Qm	Valor Pro	medio	43,46	35,34	20,58	9,47	56,54	33,98	9,47	23,52	19,13	6,37		27,19	19,95	18,67	6,50	46,06	21,63	7,19	20,56	64,06	21,67	41,90	23,58	41,55
		Desviación	Estándar	15,64	13,21	10,12	5,69	15,64	13,08	5,69	3,42	4,26	2,38		0,90	2,02	1,87	1,73	15,30	0,74	1,05	0,73	23,64	6,29	5,60	10,98	6,86
		Coeficiente de \	/ariación (%)	35,99	37,37	49,15	60,09	27,66	38,48	60,09	14,56	22,29	37,40		3,32	10,13	10,00	26,56	33,22	3,44	14,57	3,53	36,91	29,03	13,37	46,55	16,50

Tabla 4: Análisis estadístico para las unidades geotécnicas.

6.2.1. <u>Identificación</u>

Depósitos fluviales de gravas, actuales y fluviales (Qfg). Desde el portal del Túnel El Volcan hasta el propio sifón bajo el rio yeso. Estos se clasifican según la clasificación unificada (USCS) como suelos GP-GM.

Depósitos de morrena (Qm): desde el portal salida del Tunel en Suelo hasta las inmediaciones del portal del túnel Alfalfal II. Estos se clasifican según la clasificación unificada (USCS) como suelos GP-GW-GM con niveles de SW-SM.

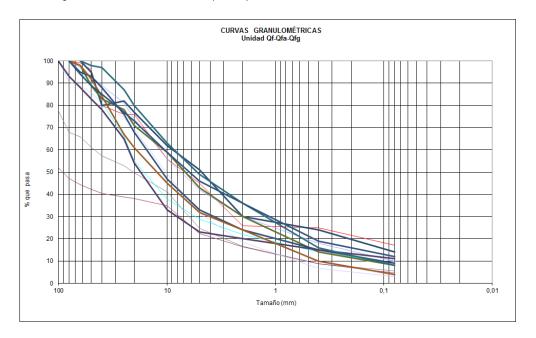


Figura 3: Huso Granulométrico. Unidad Qf-Qfa-Qfg.

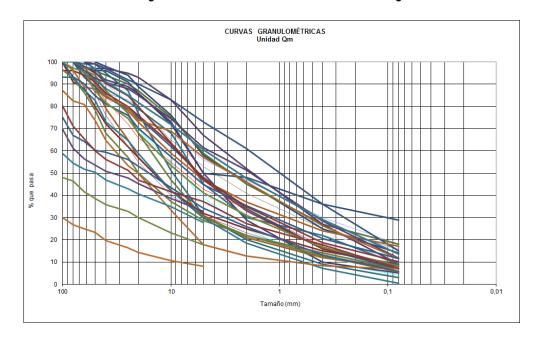


Figura 4: Huso Granulométrico. Unidad Qm.

Todas las muestras se clasifican como no plásticas, por lo que se puede afirmar que en general tanto los depósitos morrénicos como los fluviales (gravas y actuales) y los coluviales y morrénicos son no plásticos.

6.2.2. Propiedades de Estado

La tabla siguiente muestra los valores promedios obtenidos del análisis estadístico de los ensayos disponibles. En general, se consideran bajos los valores de densidad obtenidos para ambas formaciones.

	Unidad	Qf-Qfa-Qfg	Qc-Qm
Humedad natural	%	5.87	6.50
Densidad in Situ Seca	KN/m³	19.04	18.67
Densidad in Situ Húmeda	KN/m³	19.61	19.95
Densidad Boyante	KN/m³	9.61	9.95
Peso específico de las partículas sólidas	KN/m ³	27.60	27.19
Índice de poros	%	42.20	46.06

Tabla 5: Propiedades de Estado.

A través de la formulación habitualmente empleada, se han estimado las siguientes características de este material:

- Índice de Consistencia Relativa (Ic) I_C = (LL W) / (LL LP) (ref. Murphy, 2002)
- Índice de Liquidez (I_L) I_L = (W-LP) / (IP) (ref. FHWA NHI-06-088)

Donde LL es el límite líquido; LP es el límite plástico; IP es el índice de plasticidad, W es el valor de humedad.

El Índice de Consistencia indica la firmeza de los suelos cohesivos. El suelo en el límite líquido tendrá un índice de consistencia de 0, mientras que el suelo en el límite plástico tendrá un índice de consistencia de 100. Dado que las muestras ensayadas presentan porcentajes de finos muy bajos, este índice no es representativo.

El Índice de Liquidez se emplea para cuantificar la consistencia, normalmente entre 0 y 1, aunque puede ser negativo (en suelos muy secos). En nuestro caso, al tratarse de suelos granulares no plásticos con índices de humedad bajo se obtendría un inferior a 0, lo que indica que el estado de humedad de estos materiales se encuentra en el campo semisólido correspondiendo a suelos duros.

En la tabla siguiente se muestras las propiedades de estado habituales para los suelos granulares, que indican que los suelos superficiales presentes en el Sifón El Yeso y en particular en el área donde se proyectan los cruces sobre el río Manzanito, se pueden considerar "Densos a Muy Densos".

Suelos de grano grueso	Densidad Relativa (%)	Densidad seca (KN/m³)	Humedad (%)	Índice de Poros
Qf-Qfa-Qfg	-	19.04	5.87	0.42
Qc-Qm	-	18.67	6.50	0.46
Muy Flojos	0-40	<14.00	>16	>0,90
Flojos	40-60	14.00-16.00	12-16	0,65-0,90
Medianamente densos	60-80	16.00-17.50	8-12	0,55-0,65
Densos	80-90	17.50-18.50	6-8	0,40-0,65
Muy Densos	90-100	>18.50	<6	<0,40

Tabla 6: Correlaciones de compacidad para suelos granulares (Ref. González de Vallejo, L. Ingeniería Geológica).

De acuerdo a estos valores se puede indicar lo siguiente:

- Depósitos Qf-Qfa-Qfg, de acuerdo a valores de densidad seca y humedad pueden considerarse como suelos de compacidad muy densos, mientras que respecto al índice de poros se consideran como densos, esto materiales suelen presentar una densidad relativa del orden del 80 al 100% de acuerdo a los valores de la tabla anterior.
- Depósitos Qc-Qm, de acuerdo a los valores de densidad seca, humedad e índice de poros se podrían clasificar como densos, por ello en estos materiales sería adecuado considerar una densidad relativa del orden de 80 al 90%.

Se dispone de un valor de densidad relativa proporcionado por Alto Maipo SpA en el informe IDIEM-1.1.151.051-SIG-DOC-EAM-001, relativo a ensayos de caracterización realizados por la empresa Idiem a petición de Alto Maipo. Para el área de El Yeso la empresa Idiem realizó las siguientes calicatas CY07-A, CY07-B, CY30-A y CY09-A. La tabla siguiente muestra los resultados de los ensayos de laboratorio, Idiem no pudo realizar la totalidad de los ensayos solicitados por Alto Maipo como consecuencia de la presencia de un porcentaje elevado de sobre tamaños y bloques:

										Densidad	Pro	ctor	De	nsidad Relat	tiva
Calicata	Prof. (m)	Clasif. USCS	LL	LP	IP	Gs	Densidad In Situ (kN/m3)	Humedad (%)	Densidad Seca (KN/m3)	Seca Corregida (kN/m3)	DMCS	GC (%)	Densidad Minima (kN/m3)	Densidad Máxima (kN/m3)	Densidad Relativa (%)
СҮ07-В	0,9- 1,90	GC-GM	23	17	6	2,83	16,2	9,7	14,8	12,2	21,4	57	-	-	-
CY07-A	0,90- 1,90	GM	34	24	10	2,79	18,2	11,5	16,3			-	=	-	-
CY30-A	0,30- 1,30	GM	-	1	NP	2,85	20,4	6	19,2	-	21,7	-	=	-	-
CY10-A	1,60- 2,40	GP-GM	-	-	NP	2,89	1	-	-	-	1	-	-	-	-
CY09-A	1,70- 2,45	GC.GM	20	15	5	2,88	21,8	6,3	20,5	-	22,2	-	=	-	-

Tabla 7: resultados de ensayos de laboratorio solicitados por Alto Maipo SpA.

Las descripciones proporcionadas no indican a que unidades geológicas pertenecen las muestras ensayadas y las coordenadas proporcionadas no son en sistema AES Gener por lo que se estima la unidad geológica a partir de las imágenes áreas incluidas en el informe de Idiem. Las muestras CY07A, CY07B y CY30A se ejecutaron en el entorno de la Bocatoma El Yeso, por lo que no se tendrán en cuenta en este análisis. Las muestras CY10-A y CY09-A se enmarcan en el Sifón El Yeso, considerándose que la muestra CY10-A corresponde a depósitos Qfa y la muestra CY09-A a depósitos Qfg.

Las densidades obtenidas en las muestras CY09-A son mayores que las obtenidas en los ensayos realizados por CNM.

6.2.3. Resistencia

No se dispone de datos de resistencia a compresión simple de estos materiales, pues no se pudieron obtener testigos para poder ser ensayados.

En el sondeo BHY-5 se ejecutaron ensayos de penetración standard, obteniéndose golpeos de 37 a 2.95 m y rechazo a 4.5 m, de acuerdo al grafico propuesto por Lep (1953) se puede estimar una fricción de 38 a 41 grados para estos materiales granulares (Qm).

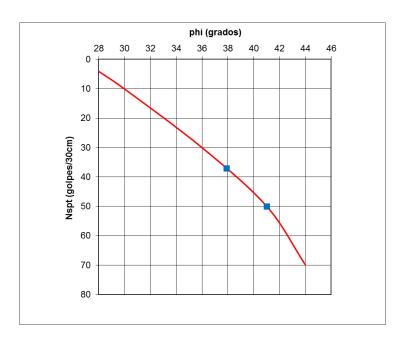
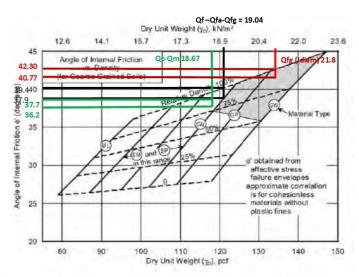


Figura 5. Gráfico de Leps que correlaciona el ángulo de fricción con el golpeo del ensayo SPT.

Para derivar los parámetros de resistencia adecuados se realizó una verificación de la densidad in situ. Posteriormente, se realizaron dos ensayos de corte directo sobre muestra compactada, con la limitación de que los valores son referidos a la fracción más fina de la muestra y por tanto la muestra debe considerarse sobre-compactada al haberse considerado la densidad in situ global y no la de la fracción ensayada. Esta sobre compactación afecta fundamentalmente a los valores de cohesión que se consideran elevados. Adicionalmente se verifica los valores de fricción de acuerdo a relaciones empíricas y tablas de valores habituales.

En estos ensayos de corte se obtuvieron los siguientes resultados promedio, los valores de fricción se han redondeado sin decimales:

		Corte	Directo	
Unidad Geotécnica	CD		CU	l
	c (kPa)	φ (°)	cu (kPa)	φ (°)
Qf-Qfa-Qfg	39.00	43.40	21.00	49.90
Qc-Qm	21.67	41.90	23.58	41.55


Tabla 8: Resultados promedio de los ensayos de corte.

Con el fin de verificar la validez de estos resultados se ha recurrido a referencias bibliográficas que permitan correlacionar la densidad medida en terreno con el ángulo de fricción y, a su vez validar los parámetros de cohesión del terreno, que por tratarse de un material granular se consideran deben ser bajos.

Una de las correlaciones disponibles en la bibliografía es la que está reflejada en diversos manuales del ejército americano (NAVFAC) y de la Federal Highway Administration (FHWA). Esta correlación se representa gráficamente en la **Figura 6**, la cual correlaciona el ángulo de fricción interna con la densidad seca del material y la densidad relativa. Incluye además referencias al tipo de suelo de acuerdo a la Clasificación Unificada de Suelos (USCS).

Note: Use caution in the shaded portion of the chart due to the potential for unreliable SPT N-values in gravels

Figura 6. Correlación entre densidad relativa, clasificación de suelo y ángulo de fricción interno para suelos granulares gruesos (NAVFAC, 1986a).

El grafico mostrado en la **Figura 6** requiere conocer la densidad relativa del material, sin embargo, no se dispone de datos suficientes para determinar la densidad relativa. Se consideran los siguientes rangos para definir la fricción con este gráfico:

Unidad Geológica	Rango Densidad Relativa	Fricción Máxima	Fricción Mínima
Qf-Qfa-Qfg	80-100%	39.40	37.90
Qc/Qm	80-90%	37.70	36.20
Qfg (Idiem)	90-100%	42.30	40.77

Tabla 9. Valores de fricción deducidos del gráfico de Navfac.

Schmertmann (1977) propone una ecuación para definir el ángulo de fricción en gravas y arenas como función de la densidad relativa:

Para gravas, Φ = 38+0.08Dr, donde Dr es la densidad relativa.

Para arenas, Φ = 28+0.14Dr, donde Dr es la densidad relativa.

Asumiendo igualmente los rangos de densidad relativa propuestos anteriormente se obtendría por esta formulación una fricción del rango:

Unidad Geológica	Rango Densidad Relativa	Fricción Máxima	Fricción Mínima
Qf-Qfa-Qfg	80-100%	44.4	46.0
Qc/Qm	80-90%	44.4	45.2
Qfg	90-100%	45.2	46.0

Tabla 10. Valores de fricción deducidos del grafico la ecuación de Schmertmann.

				Densidad seca (2)	Indice de poros	Angulo de rozamiento
Material	Compacidad	D, (%)	(1)	$\gamma_{\rm d}({\rm g/cm^3})$	e	interno
GW: Gravas bien graduadas, mezclas	Densa	75	90	2,21	0,22	40
le grava y de arena	Medianamente densa	50	55	2,08	0,28	36
	Suelta .	25	< 28	1,97	0,36	32
GP: Gravas mal graduadas, mezclas	Densa	75	70	2,04	0,33	38
de grava v arena .	Medianamente densa	75 50	50	1,92	0,39	35
,	Suelta	25	< 20	1,83	0,47	. 32
SW: Arenas bien graduadas, arenas	Densa	75	65	1,89	0,43	-37
con grava	Medianamente densa	50	35	1,79	0,49	34
	Suelta	25	< 15	1.70	0,57	30
SP: Arenas mal graduadas, arenas con	Densa	. 75	50	1,76	0,52	36
	Medianamente densa	50	30	1,67	0,60	33
giava , j	Suelta	25	< 10	1,59	0,65	29
SM: Arenas limosas	Densa	75	45	1,65	0,62	35
	Medianamente densa	50	25	1,55	0.74	32
	Suelta	25	<8	1,49	0,80	29
ML: Limos inorgánicos, arenas muy	Densa	75	35	1,49	0,80	_33
finas	Medianamente densa	50	20	1,41	0,90	31
	Suelta	25	< 4	1,35	1,00	27

valores corresponden a $\gamma_s = 2.65$ (particulas de cuarzo).

Figura 7. Propiedades comunes de los suelos granulares no cohesivos, modificado de Hunt (1984), cortesía de McGraw-Hill (IGME 1987).

La Tabla 11 compara los valores de fricción obtenidos por los distintos medios mostrados anteriormente, incluido los valores referenciales indicados en el Figura 7 y se indican los valores propuesto para la fricción de cada unidad.

		Valores de Fricción	
	Qf-Qfa-Qfg	Qc-Qm	Qfg (Idiem)
Ensayos CD	43.40	41.90	-
Grafico Lep (1953)		38-41	
Grafico NAVFAC	37.90-39.40	37.70-36.20	42.30-40.77
Schmertmann (1977)	44.4-46.0	44.4-45.2	45.2-46.0
Manual Taludes IGME	35.0-38.0(*)	35.0-38.0(*)	35.0-38.0(*)
Promedio de las distintas metodologías	39.47-41.00	36.84-41.23	41.8-40.9

Tabla 11. Comparación de valores de fricción. (*) Unidades consideradas como GP muy densa a densa

Los valores obtenidos para las muestras Qc-Qm se consideran muy bajos, de acuerdo a los resultados de materiales similares en otras áreas de proyecto, mientras que los valores promedio para las formaciones Qf-Qfa-Qfg se consideran adecuados, por ello se proponen los siguientes valores de fricción:

- Qf-Qfg-Qfa Fricción = 42 grados
- Qc-Qm Fricción = 43 grados

Así mismo es importante señalar que las especificaciones técnicas y el diseño básico se desarrollaron en base a inspecciones visuales y que no se realizó ningún ensayo o verificación de estabilidad de las geometrías de

excavación recomendadas. Igualmente, no hay validación de parámetros de mecánica de suelos en la Ingeniería Básica para el Sifón El Yeso.

Los valores de cohesión son difíciles de estimar para materiales granulares, especialmente en estos casos en que la granulometría es gruesa y más en el caso concreto de los depósitos Qc/Qm que se encuentran condicionados por la presencia de bloques y mega bloques. Por ello, se ha recurrido a valores bibliográficos para verificar los valore obtenidos en los ensayos de corte.

La **Figura 8** presenta valores típicos para distintos materiales recopilados por Rodriguez Ortiz (1989). Considerando los materiales constituyentes de la unidad Qc/Qm como una "grava arenosa con finos limosos o arcillosos que no alteran la estructura granular" se podría considerar una cohesión del orden de 0 a 20 kPa. Y considerando los materiales constituyentes de la unidad Qf-Qfa-Qfg como una "mezcla de grava y arenas con finos" se podría considerar una cohesión 0 a 10 kPa.

Los ensayos de corte directo realizados muestran cohesiones, tanto con y sin drenaje, con valores que deben considerarse elevados para el material que se va a excavar, ya que el ensayo se realizó sobre la fracción fina (máximo 4 mm) y a una densidad elevada, por lo que se podría considerar como sobrecompactada la muestra.

En los análisis de estabilidad de taludes y terraplenes se considerarán los siguientes parámetros a corto plazo (condición no drenada) y a largo plazo. Para los parámetros a corto plazo de cohesión se ha verificado que existe una relación de 1.03 entre la cohesión drenada y la cohesión sin drenaje a partir del análisis estadístico realizado:

		Parámetro	s de Corte	
Unidad Geológica	Largo	Plazo	Corto	Plazo
	c (kPa)	φ (°)	cu (kPa)	φ (°)
Qf-Qfa-Qfg	5	42	5.1	38
Qc-Qm	10	43	10.3	40

Tabla 12: Parámetros de corte para diseño.

TIPO DE SUE	LO	GRANU <0,0	LOMETR 5 < 2,0	IA A	IMITES I TTERBE ción < 0	RG	PE ESPEC	SO CIFICO	HDAD. NATURA			DEFORMA (2	ABILIDAE 2)		ESISTEN AL COR		PERM.
		mm %	mm %	₩ _L %	w _P	I _P	γ ι/m³	Ysum t/m³	w %	D. seca	WPN	$E_s = E_o$ $E_o \frac{\text{kp}}{\text{cm}^2}$	$\left(\frac{\sigma}{\sigma_{al}}\right)^{\alpha}$	φ' (°)	c' t/m²	φ',	K m/s
Grava		<5	<60	_	_	_	1,60 1,90	0,95 1,05	5 2	.1,70 1,90	8 5	400 900	0,60 0,40	34 42	=	32 35	2.10 ⁻¹ 1.10 ⁻²
Grava aren		<5	< 60	-	_	_	2,10 2,30	1,15 1,35	7 3	2,00 2,25	7	400 1100	0,70 0,50	35 45	_	32 35	1.10 ⁻² 1.10 ⁻⁶
limosos o a	osa con finos arcillosos que no estructura granular	8 15	< 60	20 45	16 25	4 25	2,10 2,40	1,15 1,45	9	2,10 2,35	7	400 1200	0,70 0,50	35 43	1 0	32 35	1.10 ⁻⁵
Mezcla de envueltas p	gravas y arenas or finos	20 40	< 60	20 50	16 25	4 30	2,00 2,25	1,05 1,30	13 5	1,90 2,20	10 5	150 400	0,90 0,70	28 35	3 0,5	22 30	1.10 ⁻⁸ 1.10 ⁻¹¹
	a) Fina	< 5	100	_	_	_	1,60 1,90	0,95 1,10	22 8	1,60 1,75	15 10	150 300	0,75 0,60	32 40	=	30 32	2.10 ⁻⁴ 1.10 ⁻⁵
Arena uniforme	b) Gruesa	<5	100	_		_	1,60 1,90	0,95 1,10	16 6	1,60 1,75	13	250 700	0,70 0,55	34 42	=	30 34	5.10 ⁻³ 2.10 ⁻⁴
Arena bien y arena cor		< 5	60		_		1,80 2,10	1,00 1,20	11 5	1,90 2,15	10 6	200 600	0,70 0,55	33 41	=	32 34	5.10 ⁻⁴ 2.10 ⁻⁵
	finos que no structura granular	8 15	>60	20 45	16 25	4 25	1,90 2,25	1,05 1,30	15 4	2,00 2,20	13 7	150 500	0,80 0,65	32 40	1 0	30 32	1.10 ⁻⁵ 1.10 ⁻⁷
Arena con la estructur	finos que alteran a granular	20 40	>60	20 50	16 30	4 30	1,80 2,15	0,90 1,10	20 8	1,70 2,00	18 12	50 250	0,90 0,75	25 32	5	22 30	1.10 ⁻⁷ 1.10 ⁻¹⁰
Limo poco	plástico	>50	>80	25 35	20 28	4	1,75 2,10	0,95 1,10	28 15	1,60 1,80	22 15	40 110		28 35	2 0,5	25 30	1.10 ⁻⁵ 1.10 ⁻⁸
Limo de pl media a alt		>80	>100	35 50	22 25	7 20	1,70 2,00	0,85 1,05	35 20	1,55 1,75	23 16	30 70		25 33	3	22 29	2.10 ⁻⁶ 1.10 ⁻⁹
Arcilla de l	paja plasticidad	>80	100	25 35	15 22	7 16	1,90 2,20	0,95 1,20	28 14	1,65 1,85	20 14	20 50		24 32	6 1,5	20 28	1.10 ⁻⁷ 2.10 ⁻⁹
Arcilla de p	plasticidad media	>90	100	40 50	18 25	16 28	1,80 2,10	0,85 1,10	38 18	1,55 1,75	23 17	10 30		20 30	8 2	10 20	5.10 ⁻⁸ 1.10 ⁻¹⁰
Arcilla de a	ılta plasticidad	100	100	60 85	20 35	33 55	1,65 2,00	0,70 1,00	55 20	1,45 1,65	27 20	6 20		17 27	10 3	6 15	1.10 ⁻⁹ 1.10 ⁻¹¹
Limo o arc	illa orgánicos	>80	100	45 70	30 45	10 30	1,55 1,90	0,55 0,90	60 30	1,45 1,70	27 18	5 20		20 26	7 2	15 22	1.10 ⁻⁹ 1.10 ⁻¹¹
Turba			_		_	_	1,04 1,30	0,04 0,30	800 100	-	_	3 8		25 30	1,5 0,5		1.10 ⁻⁵ 1.10 ⁻⁸
Fango		_	_	100 250	30 80	50 170	1,25 1,60	0,25	200 50		_	4 15		22 28	2 0,5	_	1.10 ⁻⁷ 1.10 ⁻⁹

⁽¹⁾ Según el Grundbau-Taschenbuch, 3.ª ed. 1.ª Parte, 1980.

Figura 8. Parámetros característicos del suelo (Rodriguez Ortiz, 1989)

Para el análisis de cimentaciones se considerará que se trata de un suelo muy denso. Rodriguez Ortiz propone los siguientes valores orientativos para el cálculo de cimentaciones en suelos granulares.

⁽²⁾ $\sigma_{ar} = 0.1 \text{ kp/cm}^2$

Terreno*	Módulo de deformación E' (Kp/cm²)	ν'	Presión admisil Zapatas	ble (Kp/cm²) Losas
Morrenas o bloques mal graduados, con huecos y excavables con rela- tiva facilidad.		0,35	1,5**	1,0**
Id. bien graduados, con pocos hue- cos.	550	0,30	2,0	1,5
Id. bien graduados y compactos, excavables con dificultad.	750	0,25	3,0	1,8
Gravas y gravas arenosas flojas. Fácilmente excavables desmoro- nándose las paredes de las catas en seco.		0,30	1,5	1,0
Id. compactas, excavables mante- niéndose catas de 3-4 m.	400	0,25	2,5	1,5
Gravas areno-arcillosas, bien gra- duadas flojas.	300	0,25	2,0	1,0
 Id. compactas, excavables con difi- cultad. 	600	0,20	3,5	2,0

Se supone que el terreno está sumergido o con el nivel freático profundo. Si existe riesgo de que el nivel freático pueda ascender hasta las cimentaciones los valores de la tabla se reducirán al 60 %.

Figura 9. Valores orientativos para el proyecto de cimentaciones sobre suelos granulares gruesos (Rodriguez Ortiz, 1989).

El terreno se puede considerar como gravas mal graduadas, durante la excavación de las calicatas no se observaron huecos en la estructura y el material presentaba cierta resistencia a la excavación, por lo que puede considerarse una presión admisible del terreno del orden de 200 a 300 kPa para los depósitos Qc/rm. Dado que los niveles de Qf-Qfa-Qfg son superficiales, se considera que los valores adecuados para esta unidad estarán del orden 150 a 250 kPa.

6.2.4. Compactación

Se han realizado ensayos de compactación tipo Proctor Modificado con el fin de establecer los valores de densidad requeridos para el empleo de los materiales procedentes de la excavación, tanto para rellenos con alta compactación (trasdós de estructuras, carreteras y/o caminos) como para su puesta en los botaderos.

	Proctor Modificado							CBR
Unidad Geotécnica	DM	Н	D95%PM	D90%PM	D85%PM	D80%PM	D75%PM	95% PM
	(kN/m³)	(%)	(kN/m³)	(kN/m³)	(kN/m³)	(kN/m³)	(kN/m³)	(%)
Qf-Qfa-Qfg	22,49	7,30	21,36	20,24	19,11	17,99	16,87	22,49
Qc-Qm	21,63	7,19	20,56	19,48	18,40	17,32	16,23	64,06

Tabla 13: Resultados promedio de los Ensayos de Compactación.

A continuación, se indican las densidades a alcanzar según el grado de compactación requerido:

Suele resultar necesario colocar una capa de regularización y nivelación de hormigón pobre.

	Proctor Modificado								
Unidad Geotécnica	DM Saturada	DM Boyante	DM	Н	D95%PM	D90%PM			
	(kN/m³)	(kN/m³)	(kN/m³)	(%)	(kN/m³)	(kN/m³)			
Qf-Qfa-Qfg	27.56	24.13	14.13	22,49	7,30	21,36			
Qc-Qm	27.14	23.19	13.19	21,63	7,19	20,56			

Tabla 14: Valores de densidad y humedad para rellenos compactados.

A continuación, se establecen valores orientativos para las propiedades de corte de los materiales compactados. Se tiene en cuenta que el material de la excavación necesita cierta preparación ya que es necesario retirar los bloques y bolos y, chancarlos para poder emplazarlos en el relleno.

La fricción de un material de relleno tipo todo-uno puede estimarse de forma empírica a partir de la formulación de Ayala y Rodriguez (1986), según la cual:

$$\emptyset = (M + \emptyset'_1 + \emptyset'_2 + \emptyset'_3 + \emptyset'_4) \times \infty$$

Siendo:

- a.- M un factor de litología, que toma los siguientes valores:
 - silícea = 36°
 - carbonatada = 34°
 - esquistosa = 32°
 - arcillosa = 30°
- b.- Φ1 un factor función de la compacidad que toma los siguientes valores:
 - suelta = -5°
 - media = 0°
 - compactada = +5°
- c.- Φ2 un factor función de la angulosidad que toma los siguientes valores:
 - angulosa = 2°
 - media = 0°
 - lajosa = -1°
 - redondeada = -2°
 - muy redondeada = -3°

- d.- Φ3 un factor función del tamaño de grano que toma los siguientes valores:
 - arena = 0°
 - grava fina = 1°
 - grava gruesa = 2°
 - bloques, bolos = 3°
- e.- Φ4 un factor función de la granulometría que toma los siguientes valores:
 - uniforme = -3°
 - media = 0°
 - extendida = +3°
- f.- α un factor función de la altura del relleno que toma los siguientes valores:
 - bajo (H < 20 m) = 1.1
 - medio (40 < H < 20 m) = 1.0
 - alto (H > 40 m) = 0.9°

Para nuestro caso concreto la ecuación planteada queda de la siguiente forma, considerando una litología muy variable por tratarse de depósitos de deslizamiento:

Para Qm y Qfg, Qfa:
$$\emptyset = (M + \emptyset_1' + \emptyset_2' + \emptyset_3' + \emptyset_4') \times \alpha = (33 + 5 - 2 + 2 + 0) \times 1.1 = 41.8^{\circ}$$

Respecto a los valores de cohesión, estos van a estar muy influenciados por el porcentaje de finos y el nivel de compactación. Por tanto, asumiendo que se ha considerado una cohesión para el material natural del orden de 0.05 a 0.1 MPa, se estima que para el relleno será necesario alcanzar cómo mínimo la mitad de dicha cohesión, es decir de 0.025 a 0.05 MPa respectivamente.

6.2.5. Deformabilidad

Para determinar el módulo de deformación, al no disponerse de ensayos de campo como SPT o CPT, y dado el carácter granular en que la cohesión sin drenaje se considera nula, es recomendable recurrir a valores bibliográficos.

De acuerdo a los valores propuestos por Rodriguez Ortiz en la **Figura 7** se puede considerar un módulo de deformación E' del orden de 55 a 75 MPa.

7. BASES PARA EL DISEÑO DE CORTES Y RELLENOS

De acuerdo a la caracterización geotécnica realizada se considera que los parámetros requeridos para el análisis de estabilidad de los cortes son los mostrados en la **Tabla 15**.

	Propiedades de Cálculo							
	Densidad In Situ Húmeda	ad In Situ Húmeda Cohesión						
	(KN/m³)	(kPa)	(°)					
Qf-Qfa-Qfg	19.61	5	42					
Qc-Qm	19.95	10	43					

Tabla 15: Propiedades de cálculo para cortes.

Mientras que para los rellenos indiferenciados se establecen las siguientes propiedades de acuerdo a los ensayos proctor modificados:

	Densidad		Cohesión	Fricción				
Unidad Geotécnica	De partículas	DM Húmeda	DM Boyante	DM	Н	D95%PM	Conesion	FIICCIOII
	(kN/m³)	(kN/m³)	(kN/m³)	(kN/m³)	(%)	(kN/m³)	(kPa)	(°)
Relleno Indiferenciado	27,35	23,7	13,7	22.06	7,25	20,96	2,5	41

Tabla 16: Propiedades de cálculo para rellenos. Densidad y Cohesión.

8. BASES PARA EL DISEÑO DE FUNDACIONES

Se entregan en este apartado las bases y recomendaciones para el diseño y dimensionamiento de las fundaciones de las estructuras en proyecto.

Las estructuras quedaran cimentadas en los depósitos de deslizamiento/morrenas que se encuentran bajo los suelos fluviales superficiales.

8.1. PROFUNDIDAD DE FUNDACIÓN.

Los sellos de las fundaciones quedarán condicionados a apoyarse en suelo granular constituido por gravas en matriz areno limosa o arcillosa y una penetración mínima de 0.3 para evitar espesores de suelos suelto y suelo vegetal.

8.2. TIPO DE FUNDACIONES

Las estructuras, se apoyarán en una losa de fondo la cual podrá ser flexible o rígida.

8.3. TENSIONES ADMISIBLES PARA FUNDACIONES

Los sellos de fundación se han estimado en suelo natural tipo grava arenosa compacta. Para el dimensionamiento de sistemas estructurales, se ha considerado que la estructura se apoye en relleno granular, nulo enterramiento y la caracterización indicada anteriormente.

El sondeo BHY-5 con ensayos SPT con golpeos superiores a 30 por debajo de los 2.5 m confirman una tensión de corte del terreno superior a los 0.2 MPa (**Tabla 23**).

En las **Figuras 10 y 11** se muestra la metodología propuesta por Brinch-Hansen para la definición de las tensiones admisibles. La fórmula general propuesta por Brinch-Hansen es:

$$q_h = c \cdot N_c + \frac{1}{2}B' \cdot \gamma' \cdot N_{\gamma} + \sigma'_D \cdot N_{q}$$

donde:

• q_h = presión de hundimiento

• c = cohesión del terreno

B' = anchura efectiva de la cimentación

γ' = peso específico del terreno bajo la zapata

σ'_D = sobrecarga del terreno a nivel de la cimentación

• Nc, Ny, Nq = factores adimensionales de capacidad de carga que dependen del ángulo de fricción del terreno.

Las tensiones obtenidas son muy superiores a las requeridas por la estructura, por lo que se recomiendan las siguientes tensiones de contacto admisibles para fundaciones superficiales.

$$\sigma_{adm}^e = 0.3 \ MPa$$
 Condición estática

$$\sigma_{adm}^{e+s} = 0.45 \; MPa \; \text{Condición estática + sismo}$$

Lo anterior considera un asentamiento instantáneo durante la construcción por debajo de 2.5 cm. Se define también un ancho mínimo en compresión Bc ≥ 0.8B.

Para la condición sumergida se propone una carga admisible igual a la mitad del valor para la condición drenada y eventual.

Se asumen los siguientes parámetros para la verificación de la capacidad portante del terreno:

- Profundidad promedio de cimentación 5.00 m.
- Cimentación considerada de 5.00 m x 5.00 m.
- El fondo de excavación se asume en depósitos Qc-Qm o Qf-Qfa-Qfg.
- De forma conservadora se considera que el nivel freático se encuentra a nivel de la superficie del terreno natural. En cualquier caso, la excavación deberá ser drenada previamente a la fundación de la estructura.

Se obtienen los siguientes resultados:

- Máxima profundidad de cimentación 5.00 m para Qf-Qfa-Qfg. Presión neta admisible = 1886 kPa.
- Máxima profundidad de cimentación 5.00 m para Qc-Qm. Presión neta admisible = 2877 kPa.

Características del t	erreno:	-			<u>.</u>	
. 1	10.01	kNI/m ³	Peso específico ap			
γ'	5.10					
c' (o c _u)	-, -		Cohesión aparente		n sın arenaje	
ф	38,00	•	Ángulo de fricción in		onoio)	
Nivel freático	0,00	m	$(\phi = 0 \text{ para condicion})$ Profundidad del nive		eriaje)	
Características de la				crircatico		
			•			
Geometría	re		cu=Cuadrada; re=re	ectangular	; co=corrida	
Anchura		u m	Ancho de la zapata			
Longitud	5,00		Longitud de la zapa	ta		
Profundidad	5,00	m	Profundidad de cim			
Ángulo de inclinación	0	0	Ángulo de inclinació	on con la v	ertical	
Opciones de cálculo	<u>)</u>					
F.S.	3,00		Factor de seguridad	4		
Factor profundidad	no		Considerar factor p		d (si o no)	
r dotor profundidad	110		VALORES AUXILIA		a (or o rio)	
_			_			
Factores de capacida		rga:		actores d		5
	48,93		Prandtl y Reissner	So	1,78	Brinch Hanse
	61,35		Prandtl y Reissner	S		Brinch Hanse
	56,17		Brinch Hansen		, 0,60	Brinch Hanse
Factores de profundid				actores d	e inclinación:	
d_q	1,00		Brinch Hansen	iq	1,00	Meyerhof
d_c	1,00		Brinch Hansen	i _c	, 1,00	Meyerhof
d_γ	1,00		Brinch Hansen	i_{γ}	, 1,00	Meyerhof
Prof. del n.f. bajo la za	nata:	-5,00	m			
Peso específico de cá			kN/m ³			
<u>'</u>						
,	/ 37		RESULTADOS	•	/ 37	٦
$q_h' = q$	$q \cdot N_q \cdot s$	$q \cdot i_q \cdot d_q$	$q + c' \cdot N_c \cdot s_c \cdot i_c \cdot d_c$	$-1/2 \cdot B' \cdot \gamma$	$V \cdot N_{\gamma} \cdot s_{\gamma} \cdot i_{\gamma} \cdot d_{\gamma}$	/
Geometría de zapata	no válid:	a				
Revisar	io validi	^				
Condiciones drenadas	S					
			0		0	
Sobrecarga de tierras	i	49	kN/m ²	0,50	kp/cm ²	
Presión de hundimien	to:	5659	kN/m ²	57,69	kp/cm ²	
Presión neta de hundi			kN/m ²	57,19	kp/cm ²	
5 ./		4655	1.1.1. 2	40 ==	. , 2	
Presión admisible: Presión neta admisibl			kN/m ² kN/m ²	19,73 19,23	kp/cm ² kp/cm ²	

Figura 10. Calculo de tensión admisible para profundidad de 5.00 m en Qf-Qfa-qfg

Características del t	erreno:	-			•		
		3					
γ'			kN/m³ Peso específico aparente kN/m² Cohesión aparente o cohesión sin drenaje				
c' (o c _u)			·		on sin drenaje		
φ	40,00	0	Ángulo de fricción in				
NU 1 for 4 ft	0.00		$(\phi = 0 \text{ para condicion})$		renaje)		
Nivel freático Características de la	0,00		Profundidad del niv	ei ireatico			
Caracteristicas de la	Cililetti	acion.	•				
Geometría	re		cu=Cuadrada; re=re	ectangular	; co=corrida		
	С	u		J			
Anchura	,	m	Ancho de la zapata				
Longitud	5,00		Longitud de la zapa				
Profundidad	5,00	m	Profundidad de cim	entacion			
Ángulo de inclinación	0	0	Ángulo de inclinació	n con la v	ertical		
Opciones de cálculo	<u>)</u>						
F.S.	3,00		Factor de segurida	4			
Factor profundidad	no		Considerar factor p		d (si o no)		
			VALORES AUXILIA		,		
F4 did-			F	4			
Factores de capacida		rga:	•	actores d		D: 111	
7	64,20		Prandtl y Reissner	S	1,84	Brinch Hanse	
· ·	75,31		Prandtl y Reissner	S		Brinch Hanse	
,	79,54		Brinch Hansen		, 0,60	Brinch Hanse	
Factores de profundid				actores d	e inclinación:		
d_q	1,00		Brinch Hansen	i	1,00	Meyerhof	
	1,00		Brinch Hansen	i	1,00	Meyerhof	
d_γ	1,00		Brinch Hansen	i	η 1,00	Meyerhof	
Prof. del n.f. bajo la za	nata:	-5,00	m				
Peso específico de cá	•		kN/m ³				
	ilouio.	10,11	N. 4111				
			RESULTADOS	_		7	
$q'_h = q$	$y' \cdot N_q \cdot s$	$_{q}\cdot i_{q}\cdot d_{q}$	$_{q}+c'\cdot N_{c}\cdot s_{c}\cdot i_{c}\cdot d_{c}$	$-1/2 \cdot B' \cdot j$	$v' \cdot N_{\gamma} \cdot s_{\gamma} \cdot i_{\gamma} \cdot d_{\gamma}$,	
						_	
Geometría de zapata	no válida	a					
Revisar	_						
Condiciones drenadas	3						
Sobrecarga de tierras		51	kN/m ²	0,52	kp/cm ²		
			0				
Presión de hundimien	to:		kN/m ²	88,00	kp/cm ²		
Presión neta de hundi	miento:	8582	kN/m ²	87,48	kp/cm ²		
Presión admisible:		2028	kN/m ²	29,85	kp/cm ²		
i iesiuli aulliisibie.		4340	ININ/III	25.00	KD/CIII		
Presión neta admisibl	٥.	2077	kN/m ²	29,33	kp/cm ²		

Figura 11. Calculo de tensión admisible para profundidad de 5.00 m en Qc-Qm.

8.4. CONSTANTES DE BALASTO

Para fundaciones superficiales, se deberá considerar la siguiente constante de balasto en condición estática para el cálculo de los asentamientos.

$$k_{_{\boldsymbol{v}}}^{^{e}}=k_{_{30}}\cdot\left(\frac{B+0.3}{2B}\right)^{^{2}}\cdot\left(1+\frac{B}{2L}\right)\,\mathrm{KN/m^{3}}$$

B y L corresponden a los lados menor y mayor respectivamente en contacto con el suelo, en m.

En condición sísmica, se adoptará la siguiente constante de balasto

$$k_v^{e+s} = 3k_v^e$$

Para evaluar giros, sean en condición permanente o eventual, se adoptará la siguiente constante de balasto

$$k_v^{giro} = 2k_v$$

Cabe señalar que los asentamientos evaluados con la constante de balasto antes indicada serían principalmente instantáneos con la aplicación de la carga debido a que se trata de un suelo de fundación del tipo granular.

Para el caso de apoyo o penetración en rellenos compactados granulares, serán aplicables los valores aquí entregados. Para la obtención del K30 o coeficiente de balasto para una placa cuadra de 30 cm x 30 cm se han empleado las referencias propuestas por Jiménez Salas.

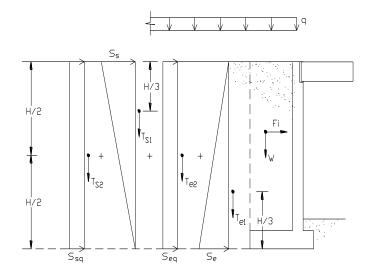
Para el caso que nos ocupa se ha considerado que el K30 idóneo es 10,0 kg/cm³ al considerar la litología como una grava arenosa con finos.

TIPO DE SUELO	Módulo de deformación E₀(kg/cm²)			Coef. Balasto Placa de 1 pie ² K _{S1} (kg/cm ³)		
**Suelo fangoso	11,00	а	33	0,5	а	1,5
*Arena Seca o Húmeda, suelta (NSPT 3 a 9)	0,16H	а	0,48H	1,2	а	3,6
*Arena Seca o Húmeda, media (N _{SPT} 9 a 30)	0,48H	а	1,6	3,6	а	12
*Arena Seca o Húmeda, densa (N _{SPT} 30 a 50)	1,60H	а	3,2	12	а	24
*Grava fina con arena fina	1,07H	а	1,33	8	а	10
*Grava media con arena fina	1,33H	а	1,6	10	а	12
*Grava media con arena gruesa	1,60H	а	2	12	а	15
*Grava gruesa con arena gruesa	2,00H	а	2,66	15	а	20
*Grava gruesa finamente estratificada	2,66H	а	5,32	20	а	40
**Arcilla blanda q _u (0,25 a 0,50 kg/cm²)	15	а	30	0,65	а	1,3
**Arcilla media q _u (0,50 a 2,00 kg/cm²)	30	а	90	1,3	а	4
**Arcilla compacta q _u (2,00 a 4,00 kg/cm²)	90	а	180	4	а	8
Arcilla margosa dura (qu 4,00 a 10,00 kg/cm²)	180	а	480	8	а	21
Marga arenosa rígida	480	а	1000	21	а	44

TIPO DE SUELO	M	ódul	o de	Coe	f. B	alasto
Arena de miga y tosco	500	а	2500	22	а	110
Marga arenosa rígida	500	а	50000	22	а	2200
Caliza margosa alterada	3500	а	5000	150	а	220
Caliza sana	20000	а	800000	885	а	36000
Granito meteorizado	700	а	200000	30	а	9000
Granito sano	40000	а	800000	1700	а	36000

Tabla 17. Valores del módulo de deformación E0 y Coeficiente de balasto KS1 (Fuente Geotecnia y Cimientos, Jiménez-Salas).

8.5. ROCE SUELO-FUNDACIÓN


Para el suelo de fundación se ha estimado un ángulo de roce interno que se logra, para solicitaciones horizontales, luego de pequeños desplazamientos. Así entonces, asumiendo una condición intermedia de desplazamiento entre el reposo y la movilización plena, lo que se traduce en aproximadamente $2\phi/3$, se define el siguiente coeficiente de roce suelo-fundación a nivel de sello.

$$tg[ø] = 0.50$$

Lo anterior supone un hormigonado de la fundación directo contra terreno.

8.6. EMPUJE DE SUELOS

En relación al cálculo de empujes de suelo, se podrán utilizar las siguientes formulaciones según corresponda:

Donde:

$$S_e = \gamma_r \cdot Ke \cdot H$$
 [kPa]

$$\delta_f = \frac{\phi_r}{2}$$

$$T_{e1} = E_e \cdot tg(\delta_f)$$

$$S_{eq} = Ke \cdot q$$
 [kPa]

$$S_{sa} = Ks \cdot q$$
 [kPa]

$$S_s = \gamma_r \cdot Ks \cdot H$$
 [kPa]

$$F_I = Cs \cdot W R_I[kN]$$

W= Peso relleno sobre zarpa [kN]. En ausencia de zarpa, W=0

$$T_{e2} = E_{eq} \cdot tg(\delta_f)$$

$$T_{s1} = E_s \cdot tg(\delta_f)$$

$$T_{s2} = E_{sq} \cdot tg(\delta_f)$$

 E_{sq} , E_{S} = Resultantes de diagramas de presión sísmica en [kN/m]

 $E_{\text{eq}}, E_{\text{e}}$ = Resultantes de diagramas de presión estática en [kN/m]

 R_I = Factor de carga sísmica en el suelo sobre la zarpa trasera.

Cs = Coeficiente sísmico horizontal.

 ϕ_r , γ_r = Ángulo de fricción interna (en °) y peso unitario del relleno (en kN/m³) respectivamente.

$$Ke = \left[\frac{\frac{1}{\cos(\beta)} \cdot \cos(\beta - \varphi)}{\sqrt{\cos(\delta + \beta)} + \sqrt{\frac{\sin(\varphi + \beta) \cdot \sin(\varphi - i)}{\cos(\beta - i)}}} \right]^{2} \cdot \cos(\beta)$$
 (2)

$$K_{AE} = \frac{\cos(\varphi - \beta - \theta)^2 \cdot \cos(\beta)}{\cos(\theta) \cdot \cos(\beta)^2 \cdot \cos(\delta + \beta + \theta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - i - \theta)}{\cos(\delta + \beta + \theta) \cdot \cos(\beta - i)}}\right]^2}$$
(3)

$$K_{S} = K_{AF} - K_{\rho} \tag{4}$$

Donde:

β=ángulo de inclinación del trasdós respecto de la vertical

i=ángulo de inclinación del relleno apoyado sobre el elemento de contención.

$$\theta = arctg\left(\frac{k_H}{1 - k_V}\right) \tag{5}$$

 $k_v = 0,12$

 k_{H} =0.18

Individualizando los coeficientes para su uso en el cálculo de empujes, se podrán adoptar los siguientes coeficientes:

Condición	Coeficiente
Activa	K _A =Ke

Condición	Coeficiente
Pasiva	K _P =1/K _A
Reposo ¹	K ₀ =0.357
Sismo (Cs=0.3'g)	K _S

Tabla 18: Coeficientes de Empuje

De acuerdo a las especificaciones técnicas (600-CI-CDD-003_03, ítem 3.1.2.5) del proyecto se considerará un coeficiente de empuje K₀=0.4. Para los casos de empujes sísmicos, el proyectista estructural, en base a su criterio y adopción de una estructura enterrada rígida, podrá adoptar empujes sísmicos sobre estructuras rígidas de acuerdo a la siguiente expresión:

$$K_{S} = K_{SR} \cdot K_{0} \cdot \gamma \cdot H \tag{6}$$

Donde K_{SR} se obtendrá de la siguiente tabla.

фr	K _{sr}							
	$C_s = 0.20$	$C_s = 0.30$	$C_s = 0.40$					
36°	0,282	0,498	0,745					
39°	0,292	0,508	0,745					
42°	0,308	0,525	0,775					
45°	0,325	0,556	0,825					

Tabla 19: Coeficientes de Empuje Muros Rígidos (Ref. Manual de Carreteras Vol. 3. 2015)

Para ϕ_r diferentes a los tabulados, interpolar.

Para muros con desplazamiento impedido en el coronamiento y muros de subterráneo se debe usar una distribución de empujes uniforme, de acuerdo a lo descrito en la Norma Chilena Oficial NCh 433 Of. 96 Modificada 2012. Adicionalmente se tendrá en cuenta lo indicado en las Especificaciones Técnicas del proyecto, concretamente lo indicado en el documento 600-Cl-CDD-003_3, y se consideraran los criterios más restrictivos. Extracto de la Especificación técnica 600-Cl-CDD-003_3:

Para la verificación de los empujes de los rellenos tras los muros de las estructuras, se adoptarán las siguientes expresiones, dependiendo de sì ellas son completamente rígidas (por efecto de arriostramiento de losas o de muros laterales), o bien si permiten algún giro o deformación (por ejemplo muros de contención):

Muros Rígidos

Caso estático (distribución trapecial)

$$\sigma_{H} = K \times (\gamma_{t}z + q_{E})t/m^{2}$$
 sobre la napa

¹ K₀=1-sen (ϕ)

$$\sigma_H = K \times [\gamma_t z_w + \gamma_b (z - z_w) + q_H] t / m^2$$
 bajo la napa

donde:

 σ_{H} : Empuje lateral del suelo, en t/m²

K : Coeficiente de empuje lateral. Utilizar un valor

K = 0.40

γ, : Peso unitario total del relleno lateral sobre el nivel freático

Recomendamos utilizar un valor $\gamma_r = 2.0 \text{ t/m}^3$

γ_b : Peso unitario boyante del relleno lateral bajo el nivel freático

Recomendamos utilizar un valor $\gamma_b = 1,0 \text{ t/m}^3$

Z : Profundidad bajo la superficie, en m

z_w: Profundidad de la napa adoptada en el diseño

q_E : Sobrecarga para el caso estático, t/m²

Al empuje anterior deberá agregarse el empuje correspondiente al agua:

$$\sigma_v = 0 \left(t/m^2 \right)$$
 sobre la napa

$$\sigma_w = (z - z_w) (t/m^2)$$
 bajo la napa

en que:

σ_w: Empuje debido al agua.

Caso sísmico (distribución uniforme)

Para el cálculo de la componente del empuje sísmico, adicional al estático, se deberá adoptar la siguiente expresión:

$$\sigma_{HS} = K_{rr} \times K \times (\gamma_r H + q_r) t f / m^2$$

Donde:

 K_{sr} : Coeficiente de empuje lateral sísmico. Utilizar K_{sr} =0,498, de acuerdo con la tabla 3.1003.404-A dei Volumen 3 del Manual de Carreteras,

MOP, para un coeficiente sísmico C_s =0,30 y un ángulo de fricción del relieno ϕ_r =36°

H : Altura total del muro, en m

q. : Sobrecarga para el caso sísmico, en tf/m².

Muros deformables

Caso estático (distribución trapecial)

Para el cálculo de la componente de empuje sísmico, adicional al estático, recomendamos adoptar la siguiente expresión:

$$\sigma_H = K \times (\gamma_t z + q_E) t / m^2$$
 sobre la napa

$$\sigma_{\scriptscriptstyle H} = K \times [\gamma_{\scriptscriptstyle I} z_{\scriptscriptstyle W} + \gamma_{\scriptscriptstyle b} (z - z_{\scriptscriptstyle W}) + q_{\scriptscriptstyle E}] t / m^2$$
 bajo la napa

donde:

 σ_u : Empuje lateral del suelo, en t/m²

K : Coeficiente de empuje lateral. Utilizar un valor

K = 0.24

γ, : Peso unitario total del relleno lateral sobre el nivel freático.

Recomendamos utilizar un valor $\gamma_i = 2.0 \text{ t/m}^3$

 γ_b : Peso unitario boyante del relleno lateral bajo el nivel freático. Utilizar

un valor $\gamma_b = 1.0 \text{ t/m}^3$

Profundidad bajo la superficie, en m

z : Profundidad de la napa adoptada en el diseño

q_E : Sobrecarga para el caso estático, t/m²

Empuje del agua

Al empuje anterior deberá agregarse el empuje correspondiente al agua:

$$\sigma_{w} = 0 \left(t/m^{2} \right)$$
 sobre la napa $\sigma_{w} = \left(z - z_{w} \right) \left(t/m^{2} \right)$ bajo la napa

en que:

 $\sigma_{_{\!\scriptscriptstyle W}}\;$: empuje debido al agua

Caso sísmico (distribución trapecial invertida)

Para la componente de empuje sísmico, adicional al estático, adoptar la siguiente expresión:

$$\sigma_{HS} = (K_{sf} - K) \times (\gamma_t (H - z) + q_z) t / m^2$$

en donde:

 $\sigma_{\it HS}~$: Empuje lateral adicional sísmico del suelo, en t/m²

 K_{sf} : Coeficiente de empuje lateral sísmico. Utilizar un valor de K_{sf} = 0,33

H : Altura total del muro, en m

q_z : Sobrecarga para el caso sísmico, en t/m²

8.7. RECEPCIÓN DE SELLOS DE FUNDACIÓN

Los sellos de fundación deberán ser recibidos conforme por un especialista geotécnico, Ingeniero Civil geotécnico o geólogo, previo al hormigonado. Se podrá considerar una recepción de sellos por parte por parte del ITO (Inspección Técnica de Obra) o quien designe el mandante en común acuerdo y coordinación con el contratista. Lo mismo aplica para la frecuencia de recepción y la metodología a seguir.

El sello de fundación se encontrará libre de material suelto procedente de la excavación, en caso de detectarse presencia de agua esta se canalizará mediante zanjas perimetrales al borde de la excavación.

Si fuera necesario se regularizará la superficie de acuerdo a las especificaciones técnicas del proyecto.

El terreno de fundación se verificará como indicado anteriormente y, se recomienda la presencia de un representante autorizado del mandante que certifique conjuntamente con el contratista las condiciones del terreno, con el fin de evitar futuros conflictos.

En caso de detectarse condiciones de terreno diferentes a las descritas en este documento se realizarán las investigaciones adicionales que se requieran, tanto en número como en profundidad de investigación.

9. COEFICIENTE DE LANE

Se ha evaluado la granulometría indicada en la **Tabla 20** y se cortó en 3" para obtener la clasificación USCS del material, como se muestra en la siguiente tabla:

Macro granulometría					
Tamiz		[0/1 aug page	Conto on 2"	[0/] votonido	
[mm]	["]	[%] que pasa	Corte en 3"	[%] retenido	
610	24	100			
400	16	85,9			
300	12	79,9			

	Macro granulometría						
	Tamiz		[%] que pasa	Corte en 3"	[%] retenido		
	250	10	68,2				
	150	5,9	45,2				
	100	3,9	38,6				
Límite gravas	75	3	35,8	100			
	50	2	32,9	91,9	8,1		
	40	1,6	28,6	79,9	12,0		
	25	1	24,7	69,0	10,9		
	20	0,8	22	61,5	7,5		
	9,51	0,4	15,3	42,7	18,7		
Límite Arenas	4,75	0,2	9,8	27,4	15,4	72,63	% Grava
	2	0,08	6,1	17,0	10,3		
	0,45	0,02	2,3	6,4	10,6		
Límite Finos	0,075	0,003	1	2,8	3,6	24,58	% Arena (F1)
					2,8	2,79	% Finos (F)

Tabla 20. Análisis granulométrico con corte por el tamiz 3"

Según la bibliografía técnica ("Fundamentos de Ingeniería Geotécnica", Braja M. Das, Capítulo 2), se clasificó el suelo según los porcentajes de grava, arena y finos a la derecha de la tabla anterior, obteniendo lo siguiente:

72,63	% Grava
24,58	% Arena (F1)
2,79	% Finos (F)

F1 = 24.58%

(100-F)/2 = (100-2.79)/2 = 48.60%

F1 < (100-F) /2, por lo tanto, el suelo tiene más grava que arena.

El suelo queda clasificado como GP (grava mal graduada con bloques).

Con esta información, según el criterio de Lane que se muestra en la **Tabla 21**, se definió un coeficiente idóneo correspondiente al más cercano al suelo de la clasificación, para obtener la altura crítica de la estructura del sifón bajo el río yeso:

Tipo de Suelo	Cw
Arena muy fina o limo	8,5
Arena fina	7,0
Arena media	6,0
Arena gruesa	5,0
Grava fina	4,0

Tipo de Suelo	Cw
Grava media	3,5
Grava gruesa con guijarros	3,0
Bloques, piedras y gravas	2,5
Arcilla blanda	3,0
Arcilla media	2,0
Arcilla dura	1,8
Arcilla muy dura	1,6

Tabla 21. Coeficientes de Lane.

Considerando un contenido de gravas en torno a un 70% y una arena del 25%, podríamos considerar un valor de Cw en torno a 3.0 para este suelo.

10. RECOMENDACIONES CONSTRUCTIVAS

10.1. RELLENOS COMPACTADOS

Los rellenos serán definidos según lo indicado en la especificación técnica general de movimiento de tierras del proyecto.

En relación al tendido de los taludes conformados por rellenos, se define un tendido de borde 2V:3H, para taludes inferiores a 10 m dispuestos en superficies planas, considerando que se ha recomendado valores de fricción del orden de 41 grados. En el caso de que los rellenos tengan una altura mayor o se dispongan sobre terrenos inclinados, se deberá revisar caso a caso para considerar un análisis de estabilidad global del sistema.

10.2. EXCAVACIONES

Los taludes recomendados en la Ingeniería Básica son taludes 3V:2H, estos taludes no fueron verificados en la Ingeniería Básica y, a la luz de los resultados de la mecánica de suelos se hace evidente que no serán taludes estables.

Con el fin de obtener un balance de tierras adecuado, se propone una combinación de taludes con y sin refuerzo para asegurar la estabilidad a largo plazo de las excavaciones:

- Taludes excavados en formaciones Qa-Qfa-Qfg se propone taludes de 40 grados sin refuerzo;
- Taludes excavados en formaciones Qc-Qm se propone taludes de 43 grados sin refuerzo

En ningún caso se dispondrán de taludes superiores a los 45º para las excvaaciones d elas cimentaciones.

En cualquier caso, los taludes serán analizados en la correspondiente memoria de cálculo que validará y confirmará las recomendaciones anteriores, además, se recomienda un seguimiento continuo de las excavaciones por parte del Departamento de Geología ya que la presencia de grandes bloques de roca puede condicionar las excavaciones.

10.2.1. Cargas

De modo de cubrir las cargas de equipos pesados y tránsito de cargas en la plataforma, se ha considerado una carga uniformemente distribuida de 12.5 kN/m² (NCh 1537 – 2009 Norma de Cargas Permanentes y Sobrecargas de Uso). En los taludes se considerará una carga de nieve de 6 kN/m².

- Carta AM-CO610/620B-00483 Criterio de Diseño Sísmico para taludes y depósitos de marina (08/10/2014).
- Carta SS-12126-13 Clarification Seismic Design Muck Deposits (04/02/2015, Rodolfo Saragoni).
- Carta AM-CO610/620B-00519 Static safety factor for construction roads design

Acorde con carta SS-12126-19 de Experto Sísmico Dr. Rodolfo Saragoni para las condiciones de carga sísmicas, se realizaron análisis pseudo-estáticos; de acuerdo con los parámetros definidos para el presente proyecto (ver acápite Documentos de Referencia), los coeficientes sísmicos utilizados son:

kh = 0,12
 kv = 0,00 para el caso temporal

• kh = 0,18 kv = 0,12 para el caso definitivo

Atendiendo al programa de construcción, desde el inicio de las excavaciones hasta completar las obras civiles y posterior ejecución del relleno de los taludes, se espera aproximadamente un período de 1 año (período considerado como temporal dado los períodos de retorno de un evento sísmico).

10.2.2. Criterios de verificación

De acuerdo con carta SS-12126-13 y AM-CO610/620B-00519, los factores de seguridad mínimos aceptables son los siguientes

- Análisis estáticos: realizados con resistencias características de los terrenos, y factores de seguridad mínimos: FS
 ≥ 1.3 en condición temporal y FS≥ 1.5 en condición definitiva.
- Análisis sísmicos: realizados con resistencias características de los terrenos, y factores de seguridad mínimos: FS
 ≥ 1.0 y FS≥ 1.1 en condición definitiva.

11. SITUACIONES IMPREVISTAS

Eventualmente podría suceder que en algún sector se detectase un tipo de suelo que establezca una condición más desfavorable que el encontrado en este estudio. Si se diera esta situación, deberá informarse al profesional geotécnico de modo de definir eventuales modificaciones a las recomendaciones planteadas en el presente informe.

12. VERIFICACIÓN DE PROPIEDADES GEOTÉCNICAS DURANTE LA FASE DE OBRA

Como se ha mencionado anteriormente, las propiedades geotécnicas de los materiales que constituyen el terreno de excavación de la cimentación de los cruces sobre el río Manzanito son difíciles de establecer mediante ensayos de laboratorio, éstas pueden aproximarse mediante ensayos in situ que en cualquier caso presentan también limitaciones. Por

ello, se han asumido unas propiedades geotécnicas para los suelos en base al criterio ingenieril del diseñador y que deberán ser verificadas durante la fase de obra.

Una vez que se ha seleccionado un valor apropiado para el diseño, es posible completar el diseño y proceder a la construcción. Hay un paso final que se puede realizar para validar los datos y posiblemente mejorar la precisión del valor seleccionado. Este proceso implica tres etapas: (1) utilizando el valor de diseño y la carga estimada real para predecir la respuesta de campo; (2) un seguimiento sistemático durante la excavación del sifón; y (3) "retro análisis" de la propiedad real de interés. Este proceso de predicción, monitoreo y reevaluación se conoce como el método de observación (Terzaghi y Peck, 1.967). Dos ejemplos de esta técnica de seguimiento:

- En suelo, el uso de piezómetros para controlar la tasa de disipación de la presión de poro y se mide asentamientos de una gran área de llenado puede resultar en una estimación más precisa de la compresibilidad y la tasa de tiempo de las características de consolidación de suelos blandos, así como proporcionar información para maximizar la tasa de colocación de relleno.
- En roca, el uso de pernos de roca instrumentados e instrumentación monitoreo de desplazamiento puede proporcionar información valiosa sobre la cinemática de la estabilidad del bloque y la fuerza de la masa rocosa articulado.

Cuando se usa apropiadamente, el método observacional tiene importantes beneficios no sólo para el proyecto en cuestión, sino también para otros proyectos en la zona debido a que se puede hacer una evaluación a gran escala de las propiedades de ingeniería.

Dentro de este método observacional se proponen las siguientes acciones a realizar durante las labores de seguimiento de la obra.

- Descripción sistemática de los suelos excavados, con toma complementaria de muestras para ensayos in situ y/o laboratorio.
- Comparación continua de las condiciones observadas con respecto de los criterios asumidos en diseño (tipos de suelos, presencia de niveles freáticos/piezométricos).
- Monitoreo de las excavaciones durante la excavación y a posteriori. En caso de fuera necesario se deberán instalar puntos de control topográfico que permitan verificar movimientos y/o asentamientos.
- En taludes y terraplenes sensibles se puede acordar la instalación de inclinómetros en caso de detectarse desplazamientos.
- Cuando se detecten condiciones diferentes a las indicadas en los diseños, se deberá realizar una verificación del diseño ante las nuevas condiciones.

12.1. CLASIFICACIÓN DE SUELOS

La clasificación de los suelos se debe hacer de acuerdo con el "Sistema Unificado de Clasificación de Suelos", propuesto por Casagrande

Los suelos se designan, en esta clasificación por dos letras mayúsculas, que reciben el nombre de prefijo y sufijo. Los prefijos indican el grupo principal a que pertenece el suelo, y los sufijos, las subdivisiones de este grupo. Hay seis grupos principales, en los que los prefijos son iniciales de los nombres de estos en inglés, excepto la del limo, que para evitar

repetición se empleó, para este grupo, la inicial de la palabra escandinava. Los seis grupos principales son. Gravas (G), Arenas (S), Limos inorgánicos (M), Arcillas inorgánicas (C), Limos y arcillas orgánicas (O), y Turba (PT). Los dos primeros se engloban con la denominación de suelos de grano grueso, los tres siguientes como suelos de grano fino, y el último como suelos fibrosos. Dentro de cada grupo existen una serie de subgrupos que se encuentran indicados en la **Figura 12**.

DI	IVISIONES PRINCIPAL	ES	SÍMBOLOS DE GRUPO	DESCRIPCIÓN DEL SUELO	SÍMBOLO GRÁFICO
		Gravas limpias	GW	Gravas bien graduadas, mezcla grava y arena	• • •
SUELOS	GRAVAS	pocos finos o sin finos	GP	Gravas mal graduadas, mezcla grava y arena	:.··.
GRANULARES	(más de la mitad de la fracción gruesa es	Gravas con finos	GM	Gravas limosas, mezclas grava, arena y limo	, . · · · .
GRUESOS	retenida por el tamiz nº 4)	apreciable cantidad de finos. (>5%).	GC	Gravas arcillosas, mezclas grava, arena y arcilla	•••
		Arenas limpias	sw	Arenas bien graduadas, arenas con grava	
(más de la mitad del material es retenido	ARENAS (más de la mitad de la fracción gruesa pasa por el tamiz n°4)	pocos finos o sin finos	SP	Arenas mal graduadas, arenas con grava	
en el tamiz nº 200)		Arenas con finos	SM	Arenas limosas, mezclas de arena y limo	
		apreciable cantidad de finos. (>5%)	SC	Arenas arcillosas, mezclas de arena y arcilla	
SUELOS	LIMOSYA	RCILLAS	ML	Limos inorgánicos y arenas muy finas ; limos limpios; arenas finas, limosas o arcillosas o limos arcillosos con ligera	
DE GRANO	DE GRANO (limite líquido menor de 50) FINO		CL	Arcillas inorgánicas de plasticidad baja a media, arcillas con grava, arcillas arenosas, arcillas limosas	
FINO			OL	Limos orgánicos y arcillas orgánicas limosas de baja plasticidad	;
(más de la mitad del material pasa por el	LIMOS Y AI	RCILLAS	MH	Limos inorgánicos, suelos arenosos finos o limosos con mica o diatomeas, limos elásticos	
tamiz nº 200)			СН	Arcillas inorgánicas de plasticidad alta	
	(límite líquido mayor de 50)		ОН	Arcillas orgánicas de plasticidad media a elevada; limos orgánicos	
SU	SUELOS MUY ORGÁNICOS			Turbas y otros suelos de alto contenido orgánico	

Figura 12.- Sistema Unificado de Clasificación de Suelos (USCS).

12.2. IDENTIFICACIÓN DE LOS SUELOS EN EL CAMPO

Los suelos de grano grueso se reconocen, en general, fácilmente por simple inspección visual. En algunos casos, un ensayo aproximado de sedimentación ayuda a estimar la proporción de finos. Para ello se agita una pequeña porción de suelo (excluidas las piedras) mezclada con agua, dentro de un frasco de vidrio, y se deja reposar. Las partículas gruesas se depositan muy pronto en el fondo y se van formando capas, cada vez, de menor tamaño de granos. De los espesores relativos de estas capas y de la turbidez remanente en el agua puede obtenerse una idea de las proporciones en que se encuentra cada tipo de material. La densidad aparente de la arena, en estos ensayos, es 4 o 5 veces superior a la de los

finos, por lo que su volumen ha de multiplicarse por cifras de ese orden para compararlo con el de arcilla y limo (en la clasificación se indican las proporciones en que aparecen los distintos materiales expresados en peso, no en volumen).

Los suelos de grano fino pueden identificarse por una serie de ensayos sencillos, que deberán realizarse con la fracción que pasa por el tamiz 40 (0,42 mm), para lo que bastará eliminar a mano las partículas gruesas. Con las pruebas de campo se podrían aproximar las características siguientes: dilatancia, características de plasticidad, resistencia en estado seco, color, olor y tacto.

12.2.1. Dilatancia (resistencia a la agitación)

Una pequeña torta de suelo saturado, de aproximadamente 10 cm³, se coloca sobre la palma de la mano y, con ésta hacia arriba, se golpea el dorso de la mano contra una mesa, la rodilla o la otra mano, de modo que la torta sufra fuertes sacudidas. Si el suelo tiene dilatancia, rezumará agua, que se notará porque su superficie se pondrá muy brillante. Estirando la torta, para lo cual basta generalmente con estirar la misma palma de la mano, el agua se vuelve a absorber y la torta vuelva a quedar mate.

Los limos inorgánicos (ML) y los suelos con diatomeas (generalmente MH) son muy sensibles a este ensayo. La mayor parte de las arcillas inorgánicas (CL y CH), así como las arcillas orgánicas (OH), no dan reacción a este ensayo, o la dan muy ligera.

12.2.2. Características de Plasticidad.

Se coge una pequeña porción de suelo saturado en aguan y se amasa con los dedos, haciendo bastoncitos (como los del límite plástico); se vuelven a amasar en una bola y se hacen nuevos bastoncitos. Se examina la rigidez de los bastoncitos cuando el suelo está aproximadamente en el límite plástico. Entonces se vuelve a formar la bola y se amasa entre los dedos hasta que ésta se deshace completamente en migajas. Se examina la tenacidad de la bola durante esta operación de amasado, durante la cual el suelo va teniendo humedades inferiores al límite plástico.

Cuanta más alta es la posición del suelo en el gráfico de plasticidad con respecto a la línea A, más rígidos son los bastoncitos en las proximidades del límite plástico y más tenaz la bola con humedad inferior a este límite. Las arcillas de origen glaciar, que están habitualmente casi en la línea A, dan bastoncitos rígidos, pero la bola se deshace fácilmente. Los suelos orgánicos dan bastoncitos muy débiles, a veces con aspecto esponjoso, y sus bolas se desmigajan en seguida.

12.2.3. Resistencia en Estado Seco

Se intentará romper una bolita de suelo secado al aire con los dedos. En la Tabla 22 se da la interpretación del ensayo.

Resistencia	Tipos de Suelos		
Nula	Suelos ML y MH, sin plasticidad		
	Suelos poco plásticos situados por debajo de la		
Pequeña	línea A. Algunas arcillas muy limosas situadas		
	ligeramente por encima de la línea A (CL).		
Media	Casi todos los suelos CL. Los suelos CH, MH y OH		
ivieula	que están próximos a la línea A.		
Grande	Casi todos los suelos CH, así como los CL situados		
Grande	bastante por encima de la línea A.		

Resistencia	Tipos de Suelos
Muy Grande	Los suelos CH situados por encima de la línea A.

Tabla 22. Estimación de la resistencia en estado seco en suelos.

La sensación de resistencia que dan los terrenos de suelos varía mucho con el tamaño de los mismos. Por ello es conveniente, para adquirir la experiencia necesaria para este ensayo, fijarse en el esfuerzo necesario para aplastar terrones de un tamaño determinado. Por otra parte, si se echan algunos de estos terrones en agua, se desharán muy deprisa si son limos y muy lentamente si son arcillas.

12.2.4. Color

En general, los colores oscuros como el gris oscuro, el castaño y el negro, indican suelos orgánicos, aunque hay casos en que esto no es cierto. Los colores brillantes, rojo, amarillo, etc., indican, casi con seguridad, suelos inorgánicos.

12.2.5. Olor

Los suelos orgánicos huelen muchas veces, y en especial si se trata de fangos, huelen a metano. Este reconocimiento debe hacerse sobre muestra fresca.

12.2.6. Tacto

Los suelos arenosos son ásperos. Los limos son muy suaves, pero dan sensación de secos, mientras que las arcillas tienen un tacto grasiento. Además, la arcilla se pega mucho a los dedos y se seca lentamente sobre ellos, mientras que el limo se seca muy rápidamente y se desprende perfectamente dando palmas, sin dejar a penas mancha.

Para comprobar la existencia de arena, sobre todo fina y en pequeña cantidad, en suelos limosos o arcillosos se debe deshacer un terroncito con los dientes.

12.3. DESCRIPCIÓN DE LOS SUELOS

Según el espesor de suelo que aparezcan, con similares características y que se pueda clasificar en el mismo grupo o subgrupo, se le da los siguientes nombres:

Estrato o capa > 30 cm de espesor

Veta 1 – 3 cm de espesor

Lente
 < 1 cm de espesor (en la mayor parte de los casos se presenta en forma discontinua)

Junto a la descripción de cada estrato o capa debe indicarse el símbolo del suelo, en el punto donde comienza el estrato. Se escribirá como sustantivo la fracción de suelo que sea mayor del 50% y las otras fracciones se describirán con los siguientes adjetivos o terminaciones, de acuerdo con el porcentaje en peso que de ella haya respecto al total.

% en peso

Indicios de 5-10 %

Algo de 10-20 %

Bastante 20-35 %

Terminación –oso/-osa 35-50 %

Los rellenos antrópicos se describirán de forma semejante a cualquier otro tipo de suelos, anteponiendo la palabra "relleno".

Cuando en un estrato varíe alguna de sus características secundarias, color, cambio en las proporciones de las fracciones secundarias o variaciones en la densidad o resistencia, se indicarán a la profundidad a la que se produzca, sin necesidad de describir de nuevo el suelo.

A continuación, se da una idea orientativa de las características resistentes de los suelos en función del golpeo necesario para clavar él toma-muestras tipo "SPT", cuando se utilice él toma-muestras de muestras inalteradas, el golpeo obtenido se dividirá por dos para hacerlo equivalente al del tipo "SPT". También se indica de una forma aproximada de determinar la resistencia de los suelos cohesivos en función de la resistencia a la penetración con el dedo.

Descripción	Tensión de corte (MPa)	Golpeo SPT por 30 cm	Penetración del dedo
Muy Blando	< 0,0125	< 2	Ninguna resistencia a la penetración con el pulgar
Blando	0,0125 – 0,025	2 – 4	Fácilmente penetrable con el pulgar varios centímetros
Moderadamente Firme	0,025 - 0,050	4 – 8	Penetrable por el pulgar con cierto esfuerzo
Firme	0,050 – 0,1	8 – 15	Sólo penetrable por el pulgar con gran esfuerzo
Muy Firme	0,1 – 0,2	15 – 30	No penetrable por el pulgar; la uña del pulgar se incrusta fácilmente
Duro	>0,2	> 30	La uña del pulgar se incrusta con dificultad

Tabla 23. Características resistentes de los suelos cohesivos (arcillas y limos)

En los suelos cohesivos el golpeo puede dar lugar a confusión; es preferible hacer un ensayo con el penetrómetro o con el aparato "Vane" para determinar la resistencia a compresión o al esfuerzo cortante.

Descripción	Golpeo SPT por 30 cm
Muy Floja	< 4
Floja	5 – 10
Medianamente Densa	11 – 30
Densa	31 – 50

Descripción	Golpeo SPT por 30 cm	
Muy Densa	>50	

Tabla 24. Densidad de los suelos sin cohesión (arenas y gravas)

ANEXO A

Investigaciones Geotécnicas (Ensayos De Laboratorio)